Capturing aesthetic intention during interactive evolution

Frazer, John H., Gu, Zhenyu, & Tang, Ming Xi (2006) Capturing aesthetic intention during interactive evolution. Computer-Aided Design, 38(3), pp. 224-237.

View at publisher


Interactive Evolutionary Systems (IES) are capable of generating and evolving large numbers of alternative designs. When using such systems, users are continuously required to interact with the system by making evaluations and selections of the designs that are being generated and evolved. The evolutionary process is therefore led by the visual aesthetic intentions of the user. However, due to the limited size of the computer screen and fuzzy nature of aesthetic evaluations, evolution is usually a mutation-driven and divergent process. The convergent mechanisms typically found in standard Evolutionary Algorithms are more difficult to achieve with IES. To address this problem, this paper presents a computational framework that creates an IES with a higher level of convergence without requiring additional actions from the user. This can be achieved by incorporating a Neural Network based learning mechanism, called a General Regression Neural Network (GRNN), into an IES. GRNN analyses the user's aesthetic evaluations during the interactive evolutionary process and is thereby able to approximate their implicit aesthetic intentions. The approximation is a regression of aesthetic appeals conditioned on the corresponding designs. This learning mechanism allows the framework to infer which designs the users may find desirable. For the users, this reduces the tedious work of evaluating and selecting designs. Experiments have been conducted using the framework to support the process of parametric tuning of facial characters. In this paper we analyze the performance of our approach and discuss the issues that we believe are essential for improving the usability and efficiency of IES. (c) 2005 Elsevier Ltd. All rights reserved.

Impact and interest:

34 citations in Scopus
22 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 11321
Item Type: Journal Article
Refereed: Yes
Additional Information: The contents of this journal can be freely accessed online via the journal’s web page (see hypertext link).
Keywords: interactive evolutionary systems, genetic algorithm, aesthetic intention, artificial neural networks optimization, density, design
DOI: 10.1016/j.cad.2005.10.008
ISSN: 0010-4485
Subjects: Australian and New Zealand Standard Research Classification > BUILT ENVIRONMENT AND DESIGN (120000)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Information Systems
Past > Schools > School of Design
Copyright Owner: Copyright 2006 Elsevier
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher
Deposited On: 08 Jan 2008 00:00
Last Modified: 24 Mar 2015 04:07

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page