QUT ePrints

Unsaturated Phosphatidylcholines Lining on the Surface of Cartilage and its Possible Physiological Roles

Chen, Yi A., Crawford, Ross W., & Oloyede, Adekunle (2007) Unsaturated Phosphatidylcholines Lining on the Surface of Cartilage and its Possible Physiological Roles. Journal of Orthopaedic Surgery and Research, 2(14), pp. 2-14.

View at publisher

Abstract

Background Evidence has strongly indicated that surface-active phospholipid (SAPL), or surfactant, lines the surface of cartilage and serves as a lubricating agent. Previous clinical study showed that a saturated phosphatidylcholine (SPC), dipalmitoyl-phosphatidylcholine (DPPC), was effective in the treatment of osteoarthritis, however recent studies suggested that the dominant SAPL species at some sites outside the lung are not SPC, rather, are unsaturated phosphatidylcholine (USPC). Some of these USPC have been proven to be good boundary lubricants by our previous study, implicating their possible important physiological roles in joint if their existence can be confirmed. So far, no study has been conducted to identify the whole molecule species of different phosphatidylcholine (PC) classes on the surface of cartilage. In this study we identified the dominant PC molecule species on the surface of cartilage. We also confirmed that some of these PC species possess a property of semipermeability.

Methods HPLC was used to analyse the PC profile of bovine cartilage samples and comparisons of DPPC and USPC were carried out through semipermeability tests.

Results It was confirmed that USPC are the dominant SAPL species on the surface of cartilage. In particular, they are Dilinoleoyl-phosphatidylcholine (DLPC), Palmitoyl-linoleoyl-phosphatidylcholine, (PLPC), Palmitoyl-oleoyl-phosphatidylcholine (POPC) and Stearoyl-linoleoyl-phosphatidylcholine (SLPC). The relative content of DPPC (a SPC) was only 8%. Two USPC, PLPC and POPC, were capable of generating osmotic pressure that is equivalent to that by DPPC.

Conclusion The results from the current study confirm vigorously that USPC is the endogenous species inside the joint as against DPPC thereby confirming once again that USPC, and not SPC, characterizes the PC species distribution at non-lung sites of the body. USPC not only has better anti-friction and lubrication properties than DPPC, they also possess a level of semipermeability that is equivalent to DPPC. We therefore hypothesize that USPC can constitute a possible addition or alternative to the current commercially available viscosupplementation products for the prevention and treatment of osteoarthritis in the future.

Impact and interest:

10 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

198 since deposited on 17 Jan 2008
4 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 11967
Item Type: Journal Article
Additional Information: The contents of this journal can be freely accessed online via the journal’s web page (see hypertext link).
DOI: 10.1186/1749-799X-2-14
ISSN: 1749-799X
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000)
Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > CLINICAL SCIENCES (110300) > Orthopaedics (110314)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2007 BioMed Central Ltd.
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 17 Jan 2008
Last Modified: 29 Feb 2012 23:32

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page