QUT ePrints

Statistical models from weigh-in-motion data

Chan, Tommy H.T., Miao, T.J., & Ashebo, Demeke B. (2005) Statistical models from weigh-in-motion data. Structural Engineering and Mechanics, 20(1), pp. 85-110.

Abstract

This paper aims at formulating various statistical models for the study of a ten year Weigh-in-Motion (WIM) data collected from various WIM stations in Hong Kong. In order to study the bridge live load model it is important to determine the mathematical distributions of different load affecting parameters such as gross vehicle weights, axle weights, axle spacings, average daily number of trucks etc. Each of the above parameters is analyzed by various stochastic processes in order to obtain the mathematical distributions and the Maximum Likelihood Estimation (MLE) method is adopted to calculate the statistical parameters, expected values and standard deviations from the given samples of data. The Kohnogorov-Smirnov (K-S) method of approach is used to check the suitability of the statistical model selected for the particular parameter and the Monte Carlo method is used to simulate the distributions of maximum value stochastic processes of a series of given stochastic processes. Using the statistical analysis approach the maximum value of gross vehicle weight and axle weight in bridge design life has been determined and the distribution functions of these parameters are obtained under both free-flowing traffic and dense traffic status. The maximum value of bending moments and shears for wide range of simple spans are obtained by extrapolation. It has been observed that the obtained maximum values of the gross vehicle weight and axle weight from this study are very close to their legal limitations of Hong Kong which are 42 tonnes for gross weight and 10 tonnes for axle weight.

Impact and interest:

5 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 12739
Item Type: Journal Article
Additional Information: For more information, please refer to the journal's website (see hypertext link) or contact the author.
Keywords: Weigh in Motion, stochastic process, Monte Carlo method, gross vehicle weight, axle weight, inattentive traffic status, dense traffic status, INVERSE GAUSSIAN DISTRIBUTIONS
ISSN: 1225-4568
Subjects: Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Urban Development
Copyright Owner: Copyright 2005 Techno-Press Ltd
Deposited On: 29 Feb 2008
Last Modified: 29 Feb 2012 23:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page