QUT ePrints

Health Monitoring and Fatigue Damage Assessment of the Bridge Deck Sections

Li, Z.X., Chan, Tommy H.T., & Ko, Jan Ming (2000) Health Monitoring and Fatigue Damage Assessment of the Bridge Deck Sections. In Ajtab, A.E. & Gosselin, S.R. (Eds.) Nondestructive Evaluation of Highways, Utilities, and Pipelines, 7-9 Mar, Newport Beach.

View at publisher

Abstract

Based on the real-time monitoring data, a fatigue damage model using continuous damage mechanics and a methodology and strategy for evaluating fatigue damage and possible critical locations of local fatigue on bridge-deck sections are developed. The proposed local damage model to evaluate the fatigue damage of bridge-deck sections allows fatigue damage to be considered at a continuum scale as a deteriorating process with its physical mechanism such as fatigue crack initiation and growth. Therefore the fatigue damage variable associates not only cycles of stress range on the accumulating process of fatigue, but also directly associates the state of deterioration and the mechanics behavior. The effective stress range for the variable-amplitude stress spectrum due to traffic load is used to evaluate the fatigue strength of the bridge-deck section at different locations, by which possible location of critical fatigue failure can be primarily determined. As a typical case to use the method and strategy proposed in this paper, fatigue damage assessment and the detection of possible critical location of fatigue in a deck section of the Tsing Ma Bridge are carried out by using strain-time history acquired by the bridge structural health monitoring system.

Impact and interest:

6 citations in Web of Science®
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 12867
Item Type: Conference Paper
Additional Information: For more information, please refer to the publisher’s website (see hypertext link) or contact the author.
Keywords: Structural health monitoring, fatigue assessment, life prediction, bridge, deck section, continuous damage mechanics, effective stress range, strain, time history
DOI: 10.1117/12.387826
ISBN: 0819436135
ISSN: 0277-786x
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Mechanical Engineering not elsewhere classified (091399)
Australian and New Zealand Standard Research Classification > TECHNOLOGY (100000)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > CIVIL ENGINEERING (090500) > Structural Engineering (090506)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Urban Development
Copyright Owner: Copyright 2000 International Society for Optical Engineering (SPIE)
Deposited On: 04 Mar 2008
Last Modified: 11 Aug 2011 01:36

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page