Classical twophase Stefan problem for spheres
McCue, Scott W., Wu, Bisheng, & Hill, James M. (2008) Classical twophase Stefan problem for spheres. Proceedings of the Royal Society of London. Series A, 464(2096), pp. 20552076.

Accepted Version
(PDF 362kB)

Abstract
The classical Stefan problem for freezing (or melting) a sphere is usually treated by assuming that the sphere is initially at the fusion temperature, so that heat flows in one phase only. Even in this idealized case there is no (known) exact solution, and the only way to obtain meaningful results is through numerical or approximate means. In this study, the full twophase problem is considered, and in particular, attention is given to the large Stefan number limit. By applying the method of matched asymptotic expansions, the temperature in both the phases is shown to depend algebraically on the inverse Stefan number on the first time scale, but at later times the two phases essentially decouple, with the inner core contributing only exponentially small terms to the location of the solid–melt interface. This analysis is complemented by applying a smalltime perturbation scheme and by presenting numerical results calculated using an enthalpy method. The limits of zero Stefan number and slow diffusion in the inner core are also noted.
Impact and interest:
Citation counts are sourced monthly from Scopus and Web of Science® citation databases.
These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.
Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.
Fulltext downloads:
Fulltext downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.
ID Code:  14099 

Item Type:  Journal Article 
Refereed:  Yes 
Additional Information:  An open access copy of this article can be accessed from the publisher's website  see DOI link above. 
Keywords:  two, phase Stefan problem, formal asymptotics, large Stefan number limit, zero Stefan number solution, slow diffusion limit, small, time behaviour, enthalpy method, solidification, melting, sphere 
DOI:  10.1098/rspa.2007.0315 
ISSN:  14712946 
Subjects:  Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > OTHER MATHEMATICAL SCIENCES (019900) > Mathematical Sciences not elsewhere classified (019999) Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > OTHER PHYSICAL SCIENCES (029900) > Physical Sciences not elsewhere classified (029999) Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > PURE MATHEMATICS (010100) > Pure Mathematics not elsewhere classified (010199) 
Divisions:  Current > Schools > School of Teacher Education & Leadership Past > QUT Faculties & Divisions > Faculty of Science and Technology 
Copyright Owner:  Copyright 2008 Royal Society of London 
Deposited On:  18 Jul 2008 00:00 
Last Modified:  25 Mar 2013 08:07 
Export: EndNote  Dublin Core  BibTeX
Repository Staff Only: item control page