Mining Fuzzy Domain Ontology from Textual Databases

Lau, Raymond Y.K., Li, Yuefeng, & Xu, Yue (2007) Mining Fuzzy Domain Ontology from Textual Databases. In IEEE/WIC/ACM International Conference on Web Intelligence, 2-5 November, Silicon Valley, USA.

View at publisher


Mining search engine query log is a new method for evaluating web site link structure and information architecture. In this paper we propose a new query-URL co-clustering for a web site useful to evaluate information architecture and link structure. Firstly, all queries and clicked URLs corresponding to particular web site are collected from a query log as bipartite graph, one side for queries and the other side for URLs. Then a new content free clustering is applied to cluster queries and URLs concurrently. Afterwards, based on information entropy, clusters of URLs and queries will be used for evaluating link structure and information architecture respectively. Data sets of different web sites have been extracted from a huge query log to evaluate our method, and experiments show promising result.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,035 since deposited on 06 Aug 2008
96 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 14308
Item Type: Conference Paper
Refereed: Yes
Keywords: Fuzzy Domain Ontology, Fuzzy Sets, Semantic Web, Text Mining
DOI: 10.1109/WI.2007.20
ISBN: 9780769530260
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > INFORMATION SYSTEMS (080600) > Information Systems Development Methodologies (080608)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Artificial Intelligence and Image Processing not elsewhere classified (080199)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2007 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 06 Aug 2008 00:00
Last Modified: 29 Feb 2012 13:38

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page