QUT ePrints

A Metadata Augmentation for Semantic and Context-Based Retrieval of Digital Cultural Objects

Pham, Binh L. & Smith, Robert (2007) A Metadata Augmentation for Semantic and Context-Based Retrieval of Digital Cultural Objects. In 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, 3-5 December 2007, Glenelg, South Australia.

View at publisher

Abstract

Cultural objects are increasingly stored and generated in digital form, yet effective methods for their indexing and retrieval still remain an open area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. The focus is on the rationale and conceptual design of the system and its various components. In particular, we discuss techniques for augmenting commonly used metadata with visual features and domain knowledge to generate high-level abstract metadata which in turn can be used for semantic and context-based indexing and retrieval. We use a sample collection of Vietnamese traditional woodcuts to demonstrate the usefulness of this approach.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

192 since deposited on 06 Aug 2008
14 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 14314
Item Type: Conference Paper
DOI: 10.1109/DICTA.2007.4426840
ISBN: 0769530672
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > LIBRARY AND INFORMATION STUDIES (080700) > Information Retrieval and Web Search (080704)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > OTHER INFORMATION AND COMPUTING SCIENCES (089900) > Information and Computing Sciences not elsewhere classified (089999)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2007 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 06 Aug 2008
Last Modified: 29 Feb 2012 23:33

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page