The Effect of Yttria-Stabilized Zirconia on the Properties of the Fluorine–Substituted Hydroxyapatite Ceramics Prepared by Pressureless Sintering

Chen, Y., Dong, Z., & Miao, Xigeng (2008) The Effect of Yttria-Stabilized Zirconia on the Properties of the Fluorine–Substituted Hydroxyapatite Ceramics Prepared by Pressureless Sintering. Journal of Biomimetics, Biomaterials and Tissue Engineering, 1, pp. 57-68.


View at publisher


Hydroxyapatite-zirconia composites have received much attention during the last decade due to their combination of the desirable mechanical properties of zirconia and the excellent bioactivity of hydroxyapatite (HA). However, thermal decomposition of the hydroxyapatite phase and reaction between the zirconia phase and the hydroxyapatite phase remain a major problem of the hydroxyapatite-zirconia composites. In this study, thermally stable and fluorine-substituted hydroxyapatite (Ca10(PO4)6(OH)0.8F1.2; coded as HA06F) was prepared by a sol-gel method to replace the hydroxyapatite. Yttria-stabilized zirconia (YTZP) was also prepared by a sol-gel method in order to produce HA06F-YTZP composites with 5, 10, 15, 20, 40, and 60 wt% YTZP by simple and cost-effective pressureless sintering. Thermogravimetric analysis (TGA) and x-ray diffraction (XRD) of the HA06F-YTZP composites showed that the thermal stability of the HA06F matrices could be maintained when the YTZP content did not exceed 20 wt% and for sintering temperatures less than 1400 oC. Dilatometric analysis and microstructural observation revealed that the YTZP phase in the HA06F-YTZP composites retarded the densification of the composites if the zirconia content was over 20 wt%. Electron scanning microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM) of the HA06F-YTZP composites showed that the YTZP second phase had a size in the nanometer scale and the reaction between the HA06F phase and the zirconia phase was suppressed. Mechanical properties including the Knoop hardness, the Young’s modulus, and the fracture toughness of the HA06F-YTZP composites increased with the YTZP content until the optimal content of 20 wt%; higher YTZP contents led to low mechanical properties due to poor densification of the composites and the severe thermal decomposition of the HA06F phase. The optimal HA06F-20YTZP composite also showed desirable attachment and proliferation of osteoblast cells. Nevertheless, the study of the composite system indicated the limitations of the pressureless sintering technique. To achieve the full potential of the composites for medium or low load bearing applications, a pressure-assisted sintering technique would still be necessary.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

475 since deposited on 19 Aug 2008
21 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 14423
Item Type: Journal Article
Refereed: Yes
DOI: 10.4028/
ISSN: 1662-100X
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2008 Trans Tech Publications
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 19 Aug 2008 00:00
Last Modified: 18 May 2016 05:26

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page