A bridge between robustness and simplicity: practical control design for complex systems

Bevrani, Hassan, Hiyama, Takashi, Mitani, Yasunori, & Tsuji, Kiichiro (2005) A bridge between robustness and simplicity: practical control design for complex systems. In 1st ASIJ Scientific Seminar, February 2005, Tokyo, Japan.

PDF (22kB)


Automatic control design has been one of the major subjects in real-world system design/operation and is becoming much more significant today in accordance with increasing size, changing structure, uncertainties and complexity of artificial industry systems. A major challenge in a new environment is to integrate computing, communication and control into appropriate levels of real-world systems operation and control. In practice, many control systems usually track different control objectives such as stability, disturbance attenuation and reference tracking with considering practical constraints, simultaneously. At the moment in the industry applications, it is desirable to meet all specified goals using the controllers with simple structures. Since, practically these controllers are commonly designed based on experiences, classical and trial-and-error approaches, they are incapable of obtaining good dynamical performance to capture all design objectives and specifications for a wide range of operating conditions and various disturbances. It is significant to note that because of using simple structure, pertaining to the low-order control synthesis for dynamical systems in the presence of strong constraints and tight objectives are few and restrictive. Under such conditions, the synthesis process may not approach to a strictly feasible solution. Therefore, the most of robust and optimal approaches suggest complex state-feedback or high-order dynamic controllers. Moreover in the most of proposed approaches, a single performance criterion has been used to evaluate the robustness of resulted control systems. This research addresses three systematical, fast and flexible algorithms to design of low order or static output controllers for dynamical systems. The developed strategies attempt to invoke the strict conditions and bridge the gap between the power of optimal/robust control theory and industrial control design. To illustrate the effectiveness of the proposed control strategies, they have been applied to several complex systems in the electric industry.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

117 since deposited on 01 Sep 2008
6 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 14626
Item Type: Conference Paper
Refereed: Yes
Keywords: Robust control, Complex systems, Feasibility, Low, order structure
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2005 (please consult author)
Deposited On: 01 Sep 2008 00:00
Last Modified: 10 Aug 2011 14:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page