Latent degradation indicator estimation using condition monitoring information

Zhou, Yifan, Ma, Lin, Sun, Yong, & Mathew, Joseph (2008) Latent degradation indicator estimation using condition monitoring information. In Gao, Jinji, Lee, Jay, Ni, Jun, Ma, Lin, & Mathew, Joseph (Eds.) 3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems Conference, 27-30 October 2008, Beijing, China.

View at publisher


Asset health prediction is imperative to optimal asset management. Online and offline inspections can provide useful information for predicting asset health. The information from an asset health inspection can be divided into two types. (1) Direct indicators which directly determine failures (e.g. the thickness of a brake pad, or the wear in a component) and (2) indirect indicators which are not related to failures directly (e.g. vibration signals or oil analysis results). The direct indicators can provide more precise reference for the maintenance strategy determination. However, these direct degradation indicators are often technically or economically impossible to inspect frequently and accurately. The indirect indicators, on the other hand, can be acquired more easily using various condition monitoring techniques. This paper proposes two continuous state space models to estimate and predict direct degradation indicators using indirect degradation indicators. The two continuous state space models adopt the Wiener process and the Gamma process respectively. The Expectation Maximization (EM) algorithms based on the modified Kalman smoother and the modified particle smoother are used to estimate the parameters of the proposed models. The application process of the EM algorithms and the characteristics of the state space models are illuminated through a simulation study. Finally, a case study using the data from an accelerated test of a gear box is conducted to justify the feasibility of the proposed models.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

243 since deposited on 13 Nov 2008
2 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 15606
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: Condition monitoring, State space model, EM algorithm, Particle smoother, Kalman smoother
ISBN: 9781848822160
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > MECHANICAL ENGINEERING (091300) > Mechanical Engineering not elsewhere classified (091399)
Divisions: Current > Research Centres > CRC Integrated Engineering Asset Management (CIEAM)
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2008 Springer
Copyright Statement: This is the author-version of the work. Conference proceedings published, by Springer Verlag, will be available via SpringerLink. SpringerLink
Deposited On: 13 Nov 2008 00:00
Last Modified: 29 Feb 2012 13:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page