Numerical sequence representation of DNA sequences and methods to distinguish coding and noncoding sequences in a complete genome
Yu, ZuGuo, Anh, Vo V., Zhou, Yu, & Zhou, LiQian (2007) Numerical sequence representation of DNA sequences and methods to distinguish coding and noncoding sequences in a complete genome. In Callaos, N., Lesso, W., Zinn, C., & Zmazek, B. (Eds.) WMSCI 2007, The International Institute of Informatics and Systemics (IIIS), Florida, USA, pp. 171176.

Published Version (PDF 900kB) 
Abstract
In this presentation we introduce two methods to distinguish coding and noncoding sequences in a complete genome. A numerical sequence representation of DNA sequences is introduced first. There exists a onetoone correspondence between a DNA sequence and its numerical sequence representation. In the first method, three exponents from a multifractal analysis are selected to construct the parameter space. In the second method, which is based on a Fourier transform approach, three parameters from the power spectrum of the numerical sequence representation are selected to construct the parameter space. Each DNA may be represented by a point in these threedimensional spaces. We found that the points corresponding to coding and noncoding sequences in the complete genomes of prokaryotes are divided into different regions in both parameter spaces. If the point for a DNA sequence is situated in the region corresponding to coding sequences, the sequence is recognized as a coding sequence; otherwise, the sequence is classified as a noncoding one. The average accuracies using Fisher's discriminant algorithm for coding and noncoding sequences are satisfactory.
Impact and interest:
Citation counts are sourced monthly from Scopus and Web of Science® citation databases.
These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.
Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.
Fulltext downloads:
Fulltext downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.
ID Code:  15651 

Item Type:  Conference Paper 
Refereed:  Yes 
Additional URLs:  
ISBN:  1934272140, 9781934272145 
Subjects:  Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > APPLIED MATHEMATICS (010200) > Biological Mathematics (010202) Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > GENETICS (060400) > Genome Structure and Regulation (060407) 
Divisions:  Past > QUT Faculties & Divisions > Faculty of Science and Technology Current > Schools > School of Mathematical Sciences 
Copyright Owner:  Copyright 2007 (please consult author) 
Deposited On:  18 Nov 2008 00:00 
Last Modified:  06 Mar 2015 00:48 
Export: EndNote  Dublin Core  BibTeX
Repository Staff Only: item control page