QUT ePrints

Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides

Palmer, Sara J., Frost, Ray L., & Nguyen, Tai M. (2009) Hydrotalcites and their role in coordination of anions in Bayer liquors: Anion binding in layered double hydroxides. Coordination Chemistry Reviews, 253(1-2), pp. 250-267.

View at publisher

Abstract

Bauxite refinery residues (red mud) are derived from the Bayer process by the digestion of crushed bauxite in concentrated caustic at elevated temperatures and pressures. Following the recovery of the valuable alumina containing portion, there remains an alkaline residue consisting primarily of iron oxides, aluminium oxides, silica oxides, titanium oxides and trace heavy metals. This slurry residue, if untreated, is unsuitable for discharge directly into the environment and is usually stored in holding dams. The liquid portion has the potential for discharge, but requires pre-treatment before this can occur. Seawater neutralisation of the solid residue is one such treatment which has been employed in recent years. This process facilitates a significant reduction in pH and dissolved metal concentrations, through the precipitation of hydrotalcite-like compounds and some other Mg, Ca, and Al hydroxide and carbonate minerals. The hydrotalcite-like compounds, precipitated during seawater neutralisation, also remove oxy-anions of transition metals through a combination of intercalation and adsorption of the anionic species on the external surfaces, where small anions are intercalated while larger organic molecules are adsorbed.

Layered double hydroxides (LDHs) have been investigated for many years as host materials for a range of anion exchange intercalation reactions. The lamellar structure of LDHs can be used for the controlled addition or removal of a variety of species, both organic and inorganic. This is achieved through their ability to adjust the separation of the hydroxide layers, and the reactivity of the interlayer region. The high affinity of hydrotalcites for carbonate anions means that it cannot be reversibly exchanged and so prevents its use as an anion exchange material. However, carbonate can be removed by thermal decomposition, evolving CO2. The resultant material adsorbs anions when placed in solution and reverts to the hydrotalcite structure. Significant advances have been made recently on the characterisation of these materials, including structural studies on the mechanism of intercalation.

Impact and interest:

78 citations in Scopus
Search Google Scholar™
78 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

2,022 since deposited on 26 Nov 2008
510 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 15728
Item Type: Journal Article
Keywords: Bayer process, seawater neutralisation, hydrotalcites, vanadate, molybdate
DOI: 10.1016/j.ccr.2008.01.012
ISSN: 0010-8545
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Colloid and Surface Chemistry (030603)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2009 Elsevier
Copyright Statement: Reproduced in accordance with the copyright policy of the publisher.
Deposited On: 26 Nov 2008
Last Modified: 06 May 2014 09:45

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page