Modification of atrium design to improve thermal and daylighting performance

Mabb, John Ashley (2001) Modification of atrium design to improve thermal and daylighting performance. Masters by Research thesis, Queensland University of Technology.


The inclusion of a central court or atrium within a building is a popular design due to its aesthetic, open appearance. The greater penetration of natural light aids in the reduction in use of artificial lighting during the day. Care must be taken to balance the solar heat gain against the daylight penetration. This balance is critical for the reduction of the electrical energy load of the building, whilst maintaining a high level of comfort for the occupants. In the tropics modifications to atrium building designs are necessary to diminish high elevation direct solar heat gain. Traditionally, shading the window apertures or lowering the transmission through the glazing was used. These solutions limit the view and reduce the light level. The use of angular selective glazing upon atria allows the rejection of high elevation direct sunlight whilst redirecting and therefore improving low elevation skylight penetration. Tilted angular selective glazing used upon adjoining spaces to atria help vertical light in the atrium well to be redirected horizontally deep into the space. These effects reduce overheating which would normally restrict the use of atria in warmer environments as well as improve illumination penetration into adjoining spaces. The research showed that under clear sky conditions the modified glazing gave a lower temperature in the middle of the day within the atrium well. A more even distribution of illuminance across the course of the day was found and a higher level of illuminance was achieved within the well and its adjoining spaces under clear skies. These effects were simulated using computer algorithms. The algorithms were verified by field data collected from the QUT Daylighting Research Test Building located at the Brisbane Airport Bureau of Meteorology site where two simultaneously monitored model (1:10 scale) atriums were studied for several months.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

6,036 since deposited on 03 Dec 2008
336 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 15780
Item Type: QUT Thesis (Masters by Research)
Supervisor: Edmonds, Ian
Keywords: Atrium, Daylighting
Department: Faculty of Science
Institution: Queensland University of Technology
Copyright Owner: Copyright John Ashley Mabb
Deposited On: 03 Dec 2008 03:48
Last Modified: 21 Jun 2017 14:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page