QUT ePrints

Development of Novel Technologies for Improved Natural Illumination of High Rise Office Buildings

Greenup, Phillip John (2004) Development of Novel Technologies for Improved Natural Illumination of High Rise Office Buildings. PhD thesis, Queensland University of Technology.

Abstract

Effective daylighting can substantially reduce the energy use and greenhouse gas emissions of commercial buildings. Daylight is also healthy for building occupants, and contributes to occupant satisfaction. When productivity improvements are considered, effective daylighting is also highly attractive financially. However, successful daylighting of sub-tropical buildings is a very difficult task, due to high direct irradiances and excessive solar shading. A device was created that combined effective solar shading and efficient daylight redirection.

The micro-light guiding shade panel achieves all objectives of an optimal daylighting device placed on the façade of a sub-tropical, high rise office building. Its design is based on the principles of non-imaging optics. This provides highly efficient designs offering control over delivered illumination, within the constraints of the second law of thermodynamics. Micro-light guiding shade panels were constructed and installed on a test building. The tested devices delivered daylight deep into the building under all conditions. Some glare was experienced with a poorly chosen translucent material. Glare was eliminated by replacing this material. Construction of the panels could be improved by application of mass-manufacturing techniques including metal pressing.

For the micro-light guiding shade panel to be utilised to its full potential, building designers must understand its impact on building performance early in the design process. Thus, the device must be modelled with lighting simulation software currently in use by building design firms. The device was successfully modelled by the RADIANCE lighting simulator. RADIANCE predictions compared well with measurements, providing bias generally less than 10%. Simulations greatly aided further development of the micro-light guiding shade panel. Several new RADIANCE algorithms were developed to improve daylight simulation in general.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,301 since deposited on 03 Dec 2008
217 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 15936
Item Type: QUT Thesis (PhD)
Supervisor: Edmonds, Ian& Moore, Ian
Keywords: Daylighting, Non-imaging Optics, Micro-Light Guiding Shade Panel, RADIANCE, Lighting Simulation, Sub-tropical Climate, High Rise Office Buildings
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Physical & Chemical Sciences
Department: Faculty of Science
Institution: Queensland University of Technology
Copyright Owner: Copyright Phillip John Greenup
Deposited On: 03 Dec 2008 13:53
Last Modified: 29 Oct 2011 05:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page