Secure key establishment for mobile networks

Tin, Yiu Shing (Terry) (2005) Secure key establishment for mobile networks. PhD thesis, Queensland University of Technology.


Informal analysis of authenticated key establishment (ake) protocols was commonly accepted as the valid argument for their security in the past. Although it can provide some confidence in protocol correctness, experience has shown time and again that ake protocols are likely to contain flaws even after an informal analysis is completed. Therefore, it has become increasingly common to expect a formal analysis, and preferably a mathematical proof, of any published ake protocol in order to obtain increased confidence in its security. In this research we use an appropriate model for analysing ake protocols based on its features and properties. The model allows us to design ake protocols modularly and reuse existing protocol components. We provide a detailed description of its formalisation, operations and usage. This description also includes ways of extracting new protocol components from existing ake protocols. Following the description of the model, we propose a new unauthenticated key establishment protocol for two-party communications. By composing this protocol with authentication protocols, we can construct several new secure ake protocols. These new protocols are compared with existing protocols for their computational efficiency. The comparison shows that our new proven secure protocols are as efficient as the existing protocols with an informal security analysis. We then propose a three-party key establishment protocol which involves a trusted server and two users. We also propose a non-interactive authentication protocol and discuss it and a variant of it. These components are used to construct a secure three-party ake protocol that supports a privacy framework. This framework allows users to remain anonymous while conducting electronic transactions with an independent service provider. A new password-based authentication protocol is proposed to address the problem of authentication using passwords. This protocol carries a proof of security and satisfies a slightly relaxed definition of security. We demonstrate its application by composing it with existing key establishment protocols. To maximise its use, we modified a two-party key establishment protocol to become three-party server based. By using the server for authentication, two users within a common network domain can establish a secure session key. Only a small number of ake protocols are demonstrated in this thesis. There exist many more provably secure ake protocols that can be constructed using the protocol components presented by applying the approach of "mix and match". That is, each new component results in a number of new ake protocols depending on the number of existing components.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

499 since deposited on 03 Dec 2008
69 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16035
Item Type: QUT Thesis (PhD)
Refereed: No
Supervisor: Boyd, Colin, Gonzalez Nieto, Juan, & Looi, Mark
Keywords: Provable security, modular approach, Canetti-Krawczyk model, secure protocol, secure protocol design, mobile key establishment
Department: Faculty of Information Technology
Institution: Queensland University of Technology
Deposited On: 03 Dec 2008 03:55
Last Modified: 28 Oct 2011 19:42

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page