On-line local load measurement based voltage instability prediction

Bahadornejad, Momen (2005) On-line local load measurement based voltage instability prediction. PhD thesis, Queensland University of Technology.


Voltage instability is a major concern in operation of power systems and it is well known that voltage instability and collapse have led to blackout or abnormally low voltages in a significant part of the power system. Consequently, tracking the proximity of the power system to an insecure voltage condition has become an important element of any protection and control scheme.

The expected time until instability is a critical aspect. There are a few energy management systems including voltage stability analysis function in the real-time environment of control centres, these are based on assumptions (such as off-line models of the system loads) that may lead the system to an insecure operation and/or poor utilization of the resources.

Voltage instability is driven by the load dynamics, and investigations have shown that load restoration due to the on-load tap changer (OLTC) action is the main cause of the voltage instability. However, the aggregate loads seen from bulk power delivery transformers are still the most uncertain power system components, due to the uncertainty of the participation of individual loads and shortcomings of the present approaches in the load modeling.

In order to develop and implement a true on-line voltage stability analysis method, the on-line accurate modeling of the higher voltage (supply system) and the lower voltage level (aggregate load) based on the local measurements is required.

In this research, using the changes in the load bus measured voltage and current, novel methods are developed to estimate the supply system equivalent and to identify load parameters. Random changes in the load voltage and current are processed to estimate the supply system Thevenin impedance and the composite load components are identified in a peeling process using the load bus data changes during a large disturbance in the system. The results are then used to anticipate a possible long-term voltage instability caused by the on-load tap changer operation following the disturbance. Work on the standard test system is provided to validate the proposed methods.

The findings in this research are expected to provide a better understanding of the load dynamics role in the voltage stability, and improve the reliability and economy of the system operation by making it possible to decrease uncertainty in security margins and determine accurately the transfer limits.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,085 since deposited on 03 Dec 2008
35 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16187
Item Type: QUT Thesis (PhD)
Supervisor: Ledwich, Gerard & Senadji, Bouchra
Keywords: power system stability, voltage stability, long-term voltage instability, voltage collapse, supply system modeling, load restoration, composite load, induction motor load, constant impedance load, constant power load, load modeling, load peeling, load parameters estimation, on-load tap changers, system variations, signal processing, on-line identification
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Department: Faculty of Built Environment and Engineering
Institution: Queensland University of Technology
Copyright Owner: Copyright Momen Bahadornejad
Deposited On: 03 Dec 2008 03:58
Last Modified: 28 Oct 2011 19:44

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page