The synthesis and application of near infrared absorbing dyes in photoelectrochemical cells

Goddard, Victoria H. M. (2006) The synthesis and application of near infrared absorbing dyes in photoelectrochemical cells. PhD thesis, Queensland University of Technology.


Research into dye sensitised solar cells has increased in recent years as the search for a viable low cost, renewable energy source continues.

The synthesis and characterisation of an array of symmetrical and asymmetrical zinc and ruthenium centred phthalocyanines and naphthalocyanines are presented in this work. Certain compounds were designed so that they would possess a carboxylic acid group which could be utilised to chemisorb the compound to a titanium dioxide surface.

The dye sensitised titania electrodes were studied as potential photoanodes in dye sensitised solar cells. The use of symmetrical and asymmetrical compounds in the solar cells enabled conclusions to be drawn about the effects on electron injection of the HOMO energy level and the number and position of binding groups.

The highest incident photon-to-current conversion efficiency (IPCE) of 4 % and overall conversion efficiency (η) of 0.09 % were obtained when 2,3:9,10-(22,92-carboxyl)benzo(b,k)-15,18,22,25-tetrakis(octyl)phthalocyaninatozinc(II) (63) was utilised as a sensitiser. This response was concluded to be due to the molecule possessing two binding groups and phthalocyanine like energy levels.

When the ruthenium centred and zinc centred compounds were compared as sensitisers in DSCs, an increase in photovoltage and photocurrent was observed with the use of the ruthenium centred compounds. This is due to the binding group being attached to the axial ligand and therefore being situated closer to the LUMO electron density which is found at the centre of the molecule. As the binding group is closer there is less hindrance to electron injection into the TiO2 conduction band.

Aggregation studies were also conducted on the acid and ester substituted zinc naphthalocyanine with and without the use of additives. It was found that the ester existed primarily as a dimer whose formation is concentration dependent. The acid also existed as a dimer but produced a "fake" monomer peak due to the formation of J aggregates. It was found that upon dilution the angle of the J aggregates shifted so that they formed face-to-face aggregates. It was found that the peripherally binding additive cetyltrimethylammonium bromide (CTAB) prevented aggregation at a concentration 20 times that of the compound but upon dilution rearranged itself so that aggregation was no longer inhibited.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,714 since deposited on 03 Dec 2008
32 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16272
Item Type: QUT Thesis (PhD)
Supervisor: Will, Geoffrey & Arnold, Dennis
Keywords: near infrared absorbing dye, photoelectrochemical cell
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Physical & Chemical Sciences
Department: Faculty of Science
Institution: Queensland University of Technology
Copyright Owner: Copyright Victoria H. M. Goddard
Deposited On: 03 Dec 2008 03:59
Last Modified: 22 Mar 2016 03:26

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page