Evaluation of the contribution of reflected UVR to the inner canthus' total dose

Birt, Benjamin Joseph (2007) Evaluation of the contribution of reflected UVR to the inner canthus' total dose. PhD by Publication, Queensland University of Technology.


Basal cell carcinoma is a form of a non-melanoma skin tumour, that commonly forms over the sun exposed regions of the head and neck. Investigation of the rate of occurrence at different sites on face and neck shows considerable variation from site to site. The inner canthus has a disproportionate number when compared to more exposed sites. The eye brow ridge, cheek bone and nose limit the field of view of the inner canthus, thus it is expected to receive less radiation than other more exposed regions. To explain the disproportionate rate, it is hypothesised that a portion of radiation incident onto the eye is reflected to the inner canthus. The aim of this thesis is to investigate the contribution that the radiation reflected off the surface of the eye makes to the overall dose on the inner canthus.

The inter reflections between the eye and inner canthus were studied through the use of the ray tracing program Zemax. Zemax was used to trace rays in a non sequential mode incident onto a model eye and periorbital region. To obtain the models of the eye and periorbital region, both magnetic resonance imaging and a casting process was investigated, with the later being superior for our uses. With the model obtained, it was used in a series of three dimensional ray tracing programs. On a macroscopic scale there is a small increase in the irradiance on the inner canthus (2 % over a 1 cm2 area). Peaks of high irradiance (19 % increase in irradiance above direct irradiance) were discovered over the surface when the detector was divided into 200 mm elements. It was concluded that these increases above the direct irradiance in these small regions, increases the possibility of the occurrence of a Basal cell carcinoma. Individual facial geometry, will greatly effect the location and size of these peaks and as a result an experimental method to measure the dose distribution across the inner canthus was proposed.

Initially it was planned to use polysulphone film to measure the erythemal dose on the inner canthus. Results from the modelling indicated that any measurements made had to be at a high spatial resolution. Polysulphone film was found to be inadequate for this, due to its large uncertainties. An alternative method was investigated so that a population study could be performed in future studies using visible radiation and high dynamic range images gave a simple and effective clinical assessment tool. The high dynamic range images showed hot spots in the irradiance across the inner canthus agreeing with the model.

The small spots of high relative irradiance may not be the only reason for the increased rate in this region. Greater skin sensitivity and absence of sun screen use at this site are other possibilities. It is believed however that the irradiance distribution across the inner canthus on a microscopic scale goes a long way to increasing the risk for certain people.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

581 since deposited on 03 Dec 2008
19 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16461
Item Type: QUT Thesis (PhD by Publication)
Supervisor: Cowling, Ian & Coyne, Steven
Keywords: basal cell carcinoma, ultraviolet radiation, three dimensional model, ray tracing, eye, inner canthus, surface topography, ray trace model, polysulphone film
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Department: Faculty of Science
Institution: Queensland University of Technology
Copyright Owner: Copyright Benjamin Joseph Birt
Deposited On: 03 Dec 2008 04:03
Last Modified: 22 Jun 2017 14:40

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page