Portfolio selection and hedge funds : linearity, heteroscedasticity, autocorrelation and tail-risk

Bianchi, Robert John (2007) Portfolio selection and hedge funds : linearity, heteroscedasticity, autocorrelation and tail-risk. PhD thesis, Queensland University of Technology.

Abstract

Portfolio selection has a long tradition in financial economics and plays an integral role in investment management. Portfolio selection provides the framework to determine optimal portfolio choice from a universe of available investments. However, the asset weightings from portfolio selection are optimal only if the empirical characteristics of asset returns do not violate the portfolio selection model assumptions. This thesis explores the empirical characteristics of traditional assets and hedge fund returns and examines their effects on the assumptions of linearity-in-the-mean testing and portfolio selection.

The encompassing theme of this thesis is the empirical interplay between traditional assets and hedge fund returns. Despite the paucity of hedge fund research, pension funds continue to increase their portfolio allocations to global hedge funds in an effort to pursue higher risk-adjusted returns. This thesis presents three empirical studies which provide positive insights into the relationships between traditional assets and hedge fund returns.

The first two empirical studies examine an emerging body of literature which suggests that the relationship between traditional assets and hedge fund returns is non-linear. For mean-variance investors, non-linear asset returns are problematic as they do not satisfy the assumption of linearity required for the covariance matrix in portfolio selection. To examine the linearity assumption as it relates to a mean-variance investor, a hypothesis test approach is employed which investigates the linearity-in-the-mean of traditional assets and hedge funds. The findings from the first two empirical studies reveal that conventional linearity-in-the-mean tests incorrectly conclude that asset returns are nonlinear. We demonstrate that the empirical characteristics of heteroscedasticity and autocorrelation in asset returns are the primary sources of test mis-specification in these linearity-in-the-mean hypothesis tests. To address this problem, an innovative approach is proposed to control heteroscedasticity and autocorrelation in the underlying tests and it is shown that traditional assets and hedge funds are indeed linear-in-the-mean.

The third and final study of this thesis explores traditional assets and hedge funds in a portfolio selection framework. Following the theme of the previous two studies, the effects of heteroscedasticity and autocorrelation are examined in the portfolio selection context. The characteristics of serial correlation in bond and hedge fund returns are shown to cause a downward bias in the second sample moment. This thesis proposes two methods to control for this effect and it is shown that autocorrelation induces an overallocation to bonds and hedge funds. Whilst heteroscedasticity cannot be directly examined in portfolio selection, empirical evidence suggests that heteroscedastic events (such as those that occurred in August 1998) translate into the empirical feature known as tail-risk. The effects of tail-risk are examined by comparing the portfolio decisions of mean-variance analysis (MVA) versus mean-conditional value at risk (M-CVaR) investors. The findings reveal that the volatility of returns in a MVA portfolio decreases when hedge funds are included in the investment opportunity set. However, the reduction in the volatility of portfolio returns comes at a cost of undesirable third and fourth moments. Furthermore, it is shown that investors with M-CVaR preferences exhibit a decreasing demand for hedge funds as their aversion for tail-risk increases.

The results of the thesis highlight the sensitivities of linearity tests and portfolio selection to the empirical features of heteroscedasticity, autocorrelation and tail-risk. This thesis contributes to the literature by providing refinements to these frameworks which allow improved inferences to be made when hedge funds are examined in linearity and portfolio selection settings.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,543 since deposited on 03 Dec 2008
53 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16477
Item Type: QUT Thesis (PhD)
Supervisor: Drew, Michael & Clements, Adam
Additional Information: Recipient of 2007 Outstanding Doctoral Thesis Award
Keywords: autocorrelation, conditional value at risk (CVaR), heteroscedasticity, heteroscedasticity and autocorrelation consistent (HAC), linearity, mean-conditional value at risk (M-CVaR), mean-value at risk (M-VaR), mean variance analysis (MVA), modern portfolio theory (MPT), portfolio selection, tail-risk, value at risk (VaR), ODTA
Divisions: Current > QUT Faculties and Divisions > QUT Business School
Current > Schools > School of Economics & Finance
Department: Faculty of Business
Institution: Queensland University of Technology
Copyright Owner: Copyright Robert John Bianchi
Deposited On: 03 Dec 2008 04:04
Last Modified: 17 Jun 2013 06:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page