Synthesis, characterisation and invitro evaluation of PLLA-co-succinic anhydride networks

George, Karina Anne (2006) Synthesis, characterisation and invitro evaluation of PLLA-co-succinic anhydride networks. PhD thesis, Queensland University of Technology.


The biocompatibility and the in vivo degradation of poly(L-lactide), (PLLA)- based materials has prompted much interest in the development of these materials into scaffolds for tissue engineering applications. PLLA-based polymers have been available for use in craniomaxillofacial surgery since 1991. Usually, a plate or sheet of the polymer is placed in or over a defect in the bone. Ideally the bone will use the polymer as a support to repair the defect and as the polymer degrades, the bone will continually remodel, so that the loss of mass and mechanical strength of the polymer correlates with the increase in the mass and strength of the new bone. However, this is an ideal situation, and is not always observed in practice.

The aim of this work is to develop PLLA-based materials that should encourage bone growth onto the material and allow control over the rate of degradation. PLLA-co-succinic anhydride networks were synthesised and the mineralisation and degradation of these materials were evaluated in vitro. The synthesis of these networks, involved the polymerisation of 4-arm star PLLA polymers, which were coupled through their end groups with succinic anhydride.

The low molecular weight star PLLA polymers were synthesised using calcium hydride and pentaerythritol as initiator and co-initiator respectively. Calcium hydride was preferred to stannous octoate in this study as there is concern over the release of tin-containing when the polymer is implanted. As only very limited studies have been directed into the polymerisation and resulting polymers formed using calcium hydride, this was a major focus of the study. The identification of hydrogen in the reaction tubes was evidence that calcium alkoxide, formed from the reaction of

pentaerythritol and calcium hydride, is the actual initiating species for the ring opening polymerisation. In situ FT-Raman spectroscopy was used as a tool to monitor the reaction process and was found to be a convenient and reliable method for obtaining information about the polymerisation kinetics. Analysis of the FTRaman kinetic curves, along with analysis of products by GPC, polarimetry and NMR spectroscopy showed that the polymerisation was 'quasi-living' depending on the ratio of pentaerythritol and calcium hydride in the system. Furthermore, both the degree of transesterification and racemisation of polymers synthesised in optimised reactions were low.

The PLLA-co-succinic anhydride networks were synthesised by coupling of hydroxyl-terminated PLLA star polymers with succinic anhydride (one-pot reaction) and by coupling hydroxyl-terminated PLLA stars with succinic anhydride-terminated PLLA star polymers (two-pot reaction), using a carbodiimide, EDC to mediate the esterification. The one-pot reaction produced polymers with high gel fractions and high conversion of functional groups in the gel, whereas the gel fraction and conversion of functional groups was lower in the two-pot reaction. For the networks synthesised in the one-pot reaction, the molecular weight between crosslinks was controlled by the length of the PLLA polymer arms. The networks synthesised were characterised by FTIR-ATR spectroscopy, SEM, contact angle and by swelling.

The extent of mineralisation of the PLLA-co-succinic anhydride networks in simulated body fluid (SBF) after 14 days was greater than the mineral deposition on the high molecular weight PLLA reference polymer. The degradation of the networks was carried out under accelerated conditions in 0.1 M NaOH at 37 degrees Celsius. All networks degraded much more slowly than the high molecular weight linear PLLA reference sample. The rate of degradation was found to be dependent on the crystallinity of the polymer chains, with the more crystalline networks degrading at a faster rate, while the location of the degradation, surface or bulk, was controlled by the crosslink density, showing that the degradation is 'tuneable'.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,676 since deposited on 03 Dec 2008
44 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16494
Item Type: QUT Thesis (PhD)
Supervisor: Wentrup-Byrne, Edeline, Chirila, Traian, & George, Graeme
Keywords: craniomaxillofacial surgery, poly(L-lactide), (PLLA)- based materials
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Physical & Chemical Sciences
Department: Faculty of Science
Institution: Queensland University of Technology
Copyright Owner: Copyright Karina Anne George
Deposited On: 03 Dec 2008 04:04
Last Modified: 22 Mar 2016 03:23

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page