Sedimentary evolution, hydrogeology and geochemistry of a back-barrier sand island : Toorbul, Southeast Queensland

Hodgkinson, Jonathan (2008) Sedimentary evolution, hydrogeology and geochemistry of a back-barrier sand island : Toorbul, Southeast Queensland. PhD thesis, Queensland University of Technology.


Small back-barrier sand islands are poorly known in terms of hydrogeology and have been overlooked in more extensive studies of coastal groundwater systems that include larger barrier island complexes. This study employs a three-fold sequential approach to aquifer characterisation in a back-barrier sand island. A three-dimensional stratigraphic model forms the foundation framework, being derived from a multidisciplinary approach to sedimentary analysis and the construction of a depositional chronology. A conceptual hydrostratigraphic model is formulated based on the translation of sedimentary facies to hydrofacies, combined with density dependent flow calculations and tidal oscillation measurements. Groundwater hydrochemical data and mineral geochemistry are integrated with the resulting hydrogeological model to examine water-rock interaction and solute transport mechanisms.

The study area is Toorbul Island, a small back-barrier sand mass of ~5 km2 with a maximum surface elevation of ~3.5 m AHD, located in the Pumicestone Passage of Southeast Queensland. The island hosts a dual aquifer system consisting of an unconfined island freshwater lens, underlain by a semi-confined palaeovalley-fill aquifer. Groundwater in the semi-confined aquifer is hyper-saline, carrying high concentrations of dissolved metals, with iron, in particular, ranging from 40 to < 200 mg l-1. This is of significant interest for both human health and environmental management, because iron is an important nutrient source for toxic algal bacteria such as Lyngbya majuscula.

Conceptual modelling demonstrates that iron oxides and hydroxides are the main source of iron in the semi-confined aquifer, with a contribution from ferruginous chlorite dissolution. Aqueous manganese and a proportion of the aqueous iron are derived from the dissolution of manganoan ilmenite. Ferric iron minerals also contribute a significant proportion of dissolved iron in the deeper regions of the unconfined aquifer. Aqueous iron in the shallow unconfined groundwater is limited by iron sulphides, which also regulate acidity and indirectly limit dissolved aluminium concentrations. Groundwater redox state governed by seasonal climatic fluxes is the most significant control on iron-bearing mineral phase stability. Transport of dissolved metals to the surrounding estuary and the adjacent barrier island groundwater system is limited by the rate of ion diffusion across transition zone boundaries.

The overall conclusions derived from this research show that back-barrier islands should be evaluated as discrete hydrogeological entities. The stratigraphic complexity that may be apparent within these island landforms should not be underestimated and the model domain should not necessarily be treated as a homogeneous system. This complexity is exemplified by the relationship between the upper and lower aquifers on Toorbul Island and the associated distribution of groundwater compositional heterogeneity. The complex stratigraphy within the sedimentary pile is derived from the presence of a sub-surface palaeovalley and the sedimentary response to changing sea-level over time. Considering the current widespread distribution of estuarine systems, complex hydrogeology as exhibited by Toobul Island, may be common in many small back-barrier island groundwater systems. The aquifer characteristics and their influence on solute transport and delivery can have significant ramifications for the exploitation of the adjacent coastal plain and barrier island aquifers. The potential influence on the latter is of particular concern due to the pressure imposed on potable groundwater supplies by increasing population densities in coastal areas.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,110 since deposited on 03 Dec 2008
42 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16686
Item Type: QUT Thesis (PhD)
Supervisor: Cox, Malcolm & McLoughlin, Stephen
Keywords: sedimentary facies; hydrofacies; redox disequilibrium; density dependent flow; baroclinic and barotropic fields; diffusion boundaries
Divisions: Past > Schools > Biogeoscience
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Department: Faculty of Science
Institution: Queensland University of Technology
Copyright Owner: Copyright Jonathan Hodgkinson
Deposited On: 03 Dec 2008 04:08
Last Modified: 28 Oct 2011 19:51

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page