QUT ePrints

Behaviour and design of cold-formed steel hollow flange sections under axial compression

Zhao, Wen-Bin (2006) Behaviour and design of cold-formed steel hollow flange sections under axial compression. .

Abstract

The use of cold-formed steel structures is increasing rapidly around the world due to the many advances in construction and manufacturing technologies and relevant standards. However, the structural behaviour of these thin-walled steel structures is characterised by a range of buckling modes such as local buckling, distortional buckling or flexural torsional buckling. These buckling problems generally lead to severe reduction and complicated calculations of their member strengths. Therefore it is important to eliminate or delay these buckling problems and simplify the strength calculations of cold-formed steel members.

The Hollow Flange Beam with two triangular hollow flanges, developed by Palmer Tube Mills Pty Ltd in the mid-1990s, has an innovative section that can delay the above buckling problems efficiently. This structural member is considered to combine the advantages of hot-rolled I-sections and conventional cold-formed sections such as C- and Z-sections (Dempsey, 1990). However, this structural product was discontinued in 1997 due to the complicated manufacturing process and the expensive electric resistance welding method associated with severe residual stresses (Doan and Mahendran, 1996). In this thesis, new fastening methods using spot-weld, screw fastener and self-pierced rivet were considered for the triangular Hollow Flange Beams (HFBs) and the new rectangular hollow flange beams (RHFBs). The structural behaviour of these types of members in axial compression was focused in this research project. The objective of this research was to develop suitable design models for the members with triangular and rectangular hollow flanges using new fastening methods so that their behaviour and ultimate strength can be predicted accurately under axial compression.

In the first stage of this research a large number of finite element analyses (FEA) was conducted to study the behaviour of the electric resistance welded, triangular HFBs (ERW-HFBs) under axial compression. Experimental results from previous researchers were used to verify the finite element model and its results. Appropriate design rules based on the current design codes were recommended. Further, a series of finite element models was developed to simulate the corresponding HFBs fastened using lap-welds (called LW-HFBs) and screw fasteners or spot-welds or self-piercing rivets (called S-HFBs). Since the test specimens of LW-HFBs and S-HFBs were unavailable, the finite element results were verified by comparison with the experimental results of ERW-HFB with reasonable agreement.

In the second stage of this research, a total of 51 members with rectangular hollow flanges including the RHFBs made from a single plate and 3PRHFBs made from three plates fastened with spot-welds and screws was tested under axial compression. The finite element models based on the tests were then developed that included the new fasteners, contact simulations, geometric imperfections and residual stresses. The improved finite element models were able to simulate local buckling, yielding, global buckling and local/global buckling interaction failure associated with gap opening as agreed well with the corresponding full-scale experimental results. Extensive parametric studies for the RHFBs made from a single plate and the 3PRHFBs made from three plates were undertaken using finite element analyses. The analytical results were compared with the predictions using the current design rules based on AS 4100, AS/NZS 4600 and the new direct strength method. Appropriate design formulae based on the direct strength method for RHFBs and 3PRHFBs were developed. This thesis has thus enabled the accurate prediction of the behaviour and strength of the new compression members with hollow flanges and paved the way for economical and efficient use of these members in the industry.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

4,694 since deposited on 15 Dec 2008
1,446 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 16909
Item Type: QUT Thesis (PhD)
Supervisor: Mahendran, Mahadeva& Gurung, Netra
Keywords: structural engineering, steel structures, cold-formed steel, axial compression, design
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Urban Development
Institution: Queensland University of Technology
Deposited On: 15 Dec 2008 10:28
Last Modified: 18 Jan 2013 16:28

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page