QUT ePrints

A new technique for instantaneous frequency rate estimation

O'Shea, Peter J. (2002) A new technique for instantaneous frequency rate estimation. IEEE Signal Processing Letters, 9(8), pp. 251-252.

View at publisher

Abstract

This letter introduces a two-dimensional bilinear mapping operator referred to as the cubic phase (CP) function. For first-, second-, or third-order polynomial phase signals, the energy of the CP function is concentrated along the frequency rate law of the signal. The function, thus, has an interpretation as a time-frequency rate representation. The peaks of the CP function yield unbiased estimates of the instantaneous (angular) frequency rate (IFR) and, hence, can be used as the basis for an IFR estimation algorithm. The letter defines an IFR estimation algorithm and theoretically analyzes it. The estimation is seen to be asymptotically optimal at the center of the data record for high signal-to-noise ratios. Simulations are provided to verify the theoretical claims.

Impact and interest:

86 citations in Scopus
Search Google Scholar™
54 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

526 since deposited on 14 Jul 2005
92 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 1856
Item Type: Journal Article
Keywords: Fourier, modal analysis, signal analysis, stability
DOI: 10.1109/LSP.2002.803003
ISSN: 1070-9908
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600) > Signal Processing (090609)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2002 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 14 Jul 2005
Last Modified: 09 Jun 2010 22:26

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page