Techniques for automated and interactive note sequence morphing of mainstream electronic music

Wooller, René William (2007) Techniques for automated and interactive note sequence morphing of mainstream electronic music. PhD thesis, Queensland University of Technology.

Rene Wooller Thesis.pdf.


Note sequence morphing is the combination of two note sequences to create a ‘hybrid transition’, or ‘morph’. The morph is a ‘hybrid’ in the sense that it exhibits properties of both sequences. The morph is also a ‘transition’, in that it can segue between them. An automated and interactive approach allows manipulation in realtime by users who may control the relative influence of source or target and the transition length. The techniques that were developed through this research were designed particularly for popular genres of predominantly instrumental electronic music which I will refer to collectively as Mainstream Electronic Music (MEM). The research has potential for application within contexts such as computer games, multimedia, live electronic music, interactive installations and accessible music or “music therapy”. Musical themes in computer games and multimedia can morph adaptively in response to parameters in realtime. Morphing can be used by electronic music producers as an alternative to mixing in live performance. Interactive installations and accessible music devices can utilise morphing algorithms to enable expressive control over the music through simple interface components. I have developed a software application called LEMorpheus which consists of software infrastructure for morphing and three alternative note sequence morphing algorithms: parametric morphing, probabilistic morphing and evolutionary morphing. Parametric morphing involves converting the source and target into continuous envelopes, interpolation, and converting the interpolated envelopes back into note sequences. Probabilistic morphing involves converting the source and target into probability matrices and seeding them on recent output to generate the next note. Evolutionary morphing involves iteratively mutating the source into multiple possible candidates and selecting those which are judged as more similar to the target, until the target is reached. I formally evaluated the probabilistic morphing algorithm by extracting qualitative feedback from participants in a live electronic music situation, benchmarked against a live, professional DJ. The probabilistic algorithm was competitive, being favoured particularly for long morphs. The evolutionary morphing algorithm was formally evaluated using an online questionnaire, benchmarked against a human composer/producer. For particular samples, the morphing algorithm was competitive and occasionally seen as innovative; however, the morphs created by the human composer typically received more positive feedback, due to coherent, large scale structural changes, as opposed to the forced continuity of the morphing software.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,216 since deposited on 29 Apr 2009
107 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 20232
Item Type: QUT Thesis (PhD)
Supervisor: Brown, Andrew R.
Additional Information: Related dataset available via:
Keywords: morph, morphing, interpolation, morphology, mutation, computer music, algorithmic composition, algorithmic music, interactive music, adaptive music, adaptive audio, game music, live electronic music, sound installation, compositional, key modulation, temporal modulation, metric modulation, modulation, topology, note-level, note sequence, MIDI, medley, transition, mash-up, mix, remix, DJ, evolutionary art, evolutionary computing, Markov, conditional probability, generative music, transformational, jMusic, Java, Midishare, realtime, reacTIVision, morph table
Divisions: Current > QUT Faculties and Divisions > Creative Industries Faculty
Past > Schools > Music & Sound
Institution: Queensland University of Technology
Deposited On: 29 Apr 2009 04:51
Last Modified: 25 Aug 2011 03:30

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page