QUT ePrints

Managing variability in process-aware information systems

La Rosa, Marcello (2009) Managing variability in process-aware information systems. PhD thesis, Queensland University of Technology.

[img] PDF (2MB)
Marcello La Rosa Thesis.pdf.

Abstract

Configurable process models are integrated representations of multiple variants of a process model in a given domain, e.g. multiple variants of a shipment-to-delivery process in the logistics domain. Configurable process models provide a basis for managing variability and for enabling reuse of process models in Process-Aware Information Systems. Rather than designing process models from scratch, analysts can derive process models by configuring existing ones, thereby reusing proven practices. This thesis starts with the observation that existing approaches for capturing and managing configurable process models suffer from three shortcomings that affect their usability in practice. Firstly, configuration in existing approaches is performed manually and as such it is error-prone. In particular, analysts are left with the burden of ensuring the correctness of the individualized models. Secondly, existing approaches suffer from a lack of decision support for the selection of configuration alternatives. Consequently, stakeholders involved in the configuration of process models need to possess expertise both in the application domain and in the modeling language employed. This assumption represents an adoption obstacle in domains where users are unfamiliar with modeling notations. Finally, existing approaches for configurable process modeling are limited in scope to control-flow aspects, ignoring other equally important aspects of process models such as object flow and resource management. Following a design science research method, this thesis addresses the above shortcomings by proposing an integrated framework to manage the configuration of process models. The framework is grounded on three original and interrelated contributions: (i) a conceptual foundation for correctness-preserving configuration of process models; (ii) a questionnaire-driven approach for process model configuration, providing decision support and abstraction from modeling notations; (iii) a meta-model for configurable process models covering control-flow, data objects and resources. While the framework is language-independent, an embodiment of the framework in the context of a process modeling language used in practice is also developed in this thesis. The framework was formally defined and validated using four scenarios taken from different domains. Moreover, a comprehensive toolset was implemented to support the validation of the framework.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

643 since deposited on 19 May 2009
116 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 20531
Item Type: QUT Thesis (PhD)
Supervisor: Dumas Menjivar, Marlon, Mendling, Jan, & ter Hofstede, Arthur
Keywords: business process management, process-aware information systems, configurable process model, process configuration, reference model, variability, staged configuration, questionnaire, software family, Petri net, workflow net, configurable workflow net, EPC, C-EPC, YAWL, C-YAWL
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Institution: Queensland University of Technology
Deposited On: 19 May 2009 12:13
Last Modified: 29 Oct 2011 05:52

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page