QUT ePrints

Applications of constrained non-parametric smoothing methods in computing financial risk

Wong, Chung To (Charles) (2008) Applications of constrained non-parametric smoothing methods in computing financial risk. PhD thesis, Queensland University of Technology.

[img] PDF (2MB)
Chung To Wong Thesis.pdf.
[img] PDF (8kB)
Chung To Wong Citation.pdf.

Abstract

The aim of this thesis is to improve risk measurement estimation by incorporating extra information in the form of constraint into completely non-parametric smoothing techniques. A similar approach has been applied in empirical likelihood analysis. The method of constraints incorporates bootstrap resampling techniques, in particular, biased bootstrap. This thesis brings together formal estimation methods, empirical information use, and computationally intensive methods. In this thesis, the constraint approach is applied to non-parametric smoothing estimators to improve the estimation or modelling of risk measures. We consider estimation of Value-at-Risk, of intraday volatility for market risk, and of recovery rate densities for credit risk management. Firstly, we study Value-at-Risk (VaR) and Expected Shortfall (ES) estimation. VaR and ES estimation are strongly related to quantile estimation. Hence, tail estimation is of interest in its own right. We employ constrained and unconstrained kernel density estimators to estimate tail distributions, and we estimate quantiles from the fitted tail distribution. The constrained kernel density estimator is an application of the biased bootstrap technique proposed by Hall & Presnell (1998). The estimator that we use for the constrained kernel estimator is the Harrell-Davis (H-D) quantile estimator. We calibrate the performance of the constrained and unconstrained kernel density estimators by estimating tail densities based on samples from Normal and Student-t distributions. We find a significant improvement in fitting heavy tail distributions using the constrained kernel estimator, when used in conjunction with the H-D quantile estimator. We also present an empirical study demonstrating VaR and ES calculation. A credit event in financial markets is defined as the event that a party fails to pay an obligation to another, and credit risk is defined as the measure of uncertainty of such events. Recovery rate, in the credit risk context, is the rate of recuperation when a credit event occurs. It is defined as Recovery rate = 1 - LGD, where LGD is the rate of loss given default. From this point of view, the recovery rate is a key element both for credit risk management and for pricing credit derivatives. Only the credit risk management is considered in this thesis. To avoid strong assumptions about the form of the recovery rate density in current approaches, we propose a non-parametric technique incorporating a mode constraint, with the adjusted Beta kernel employed to estimate the recovery density function. An encouraging result for the constrained Beta kernel estimator is illustrated by a large number of simulations, as genuine data are very confidential and difficult to obtain. Modelling high frequency data is a popular topic in contemporary finance. The intraday volatility patterns of standard indices and market-traded assets have been well documented in the literature. They show that the volatility patterns reflect the different characteristics of different stock markets, such as double U-shaped volatility pattern reported in the Hang Seng Index (HSI). We aim to capture this intraday volatility pattern using a non-parametric regression model. In particular, we propose a constrained function approximation technique to formally test the structure of the pattern and to approximate the location of the anti-mode of the U-shape. We illustrate this methodology on the HSI as an empirical example.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

821 since deposited on 19 May 2009
205 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 20537
Item Type: QUT Thesis (PhD)
Supervisor: Wolff, Rodney& Johnson, Helen
Keywords: constraint method, expected shortfall, non-parametric approach, recovery rate density, intraday volatility, risk management, value-at-risk
Divisions: Current > Schools > School of Curriculum
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Institution: Queensland University of Technology
Deposited On: 19 May 2009 14:48
Last Modified: 25 Mar 2013 18:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page