QUT ePrints

Electrochemistry of Heteroleptic Tris(phthalocyaninato) Rare Earth(III) Complexes

Arnold, Dennis, Jiang, Jianzhuang, Ma, Changqin, Pan, Na, Sun, Xuan, & Zhu, Peihua (2004) Electrochemistry of Heteroleptic Tris(phthalocyaninato) Rare Earth(III) Complexes. European Journal of Inorganic Chemistry, 2004(3), pp. 518-523.

View at publisher

Abstract

The electrochemical characteristics of a series of heteroleptic tris(phthalocyaninato) complexes with identical rare earths or mixed rare earths (Pc)M(OOPc)M(OOPc) [M = Eu...Lu, Y; H2Pc = unsubstituted phthalocyanine, H2(OOPc) = 3,4,12,13,21,22,30,31-octakis(octyloxy)phthalocyanine] and (Pc)Eu(OOPc)Er(OOPc) have been recorded and studied comparatively by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 containing 0.1 M tetrabutylammonium perchlorate (TBAP). Up to five quasi-reversible one-electron oxidations and four one-electron reductions have been revealed. The half-wave potentials of the first, second and fifth oxidations depend on the size of the metal center, but the fifth changes in the opposite direction to that of the first two. Moreover, the difference in redox potentials of the first oxidation and first reduction for (Pc)M(OOPc)M(OOPc), 0.85−0.98 V, also decreases linearly along with decreasing rare earth ion radius, clearly showing the rare earth ion size effect and indicating enhanced π−π interactions in the triple-deckers connected by smaller lanthanides. This order follows the red-shift seen in the lowest energy band of triple-decker compounds. The electronic differences between the lanthanides and yttrium are more apparent for triple-decker sandwich complexes than for the analogous double-deckers. By comparing triple-decker, double-decker and mononuclear [ZnII] complexes containing the OOPc ligand, the HOMO−LUMO gap has been shown to contract approximately linearly with the number of stacked phthalocyanine ligands.

Impact and interest:

18 citations in Scopus
Search Google Scholar™
16 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 23136
Item Type: Journal Article
DOI: 10.1002/ejic.200300510
ISSN: 1434-1948
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > INORGANIC CHEMISTRY (030200)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Deposited On: 17 Jun 2009 23:42
Last Modified: 29 Feb 2012 23:04

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page