Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions

Horvath, Erzsebet, Kristof, Janos, Frost, Ray L., Redey, Akos, Vagvolgyi, Veronika, & Cseh, Tamas (2003) Hydrazine-hydrate intercalated halloysite under controlled-rate thermal analysis conditions. Journal of Thermal Analysis and Calorimetry, 71(3), pp. 707-714.

View at publisher


The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.

Impact and interest:

57 citations in Scopus
54 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 23294
Item Type: Journal Article
Refereed: Yes
DOI: 10.1023/A:1023301504396
ISSN: 1388-6150
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2003 Akademiai Kiado Rt. (Elsevier)
Deposited On: 17 Jun 2009 13:49
Last Modified: 29 Feb 2012 12:59

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page