QUT ePrints

Implicit difference approximation for the time fractional diffusion equation

Zhuang, Pinghui & Liu, Fawang (2006) Implicit difference approximation for the time fractional diffusion equation. Journal of Applied Mathematics and Computing, 22(3), pp. 87-99.

View at publisher

Abstract

In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.

Impact and interest:

47 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 23700
Item Type: Journal Article
Additional URLs:
Keywords: Fractional Differential Equation, Implicit Difference Approximation, Stability, Convergence
ISSN: 1598-5865
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > PURE MATHEMATICS (010100) > Ordinary Differential Equations Difference Equations and Dynamical Systems (010109)
Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > NUMERICAL AND COMPUTATIONAL MATHEMATICS (010300) > Numerical Analysis (010301)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > COMPUTATION THEORY AND MATHEMATICS (080200)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Deposited On: 18 Jun 2009 00:05
Last Modified: 29 Feb 2012 23:21

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page