QUT ePrints

Adaptive optical flow for person tracking

Denman, Simon, Chandran, Vinod, & Sridharan, Sridha (2005) Adaptive optical flow for person tracking. In Lovell, B. & Maeder, A. (Eds.) Proceedings of DICTA2005 Digital Image Computing: Techniques and Applications, IEEE CS Press, Cairns Convention Centre, Cairns, QLD, pp. 1-7.

View at publisher

Abstract

Person tracking systems are dependent on being able to locate a person accurately across a series of frames. Optical flow can be used to segment a moving object from a scene, provided the expected velocity of the moving object is known; but successful detection also relies on being able segment the background. A problem with existing optical flow techniques is that they don’t discriminate the foreground from the background, and so often detect motion (and thus the object) in the background. To overcome this problem, we propose a new optical flow technique, that is based upon an adaptive background segmentation technique, which only determines optical flow in regions of motion. This technique has been developed with a view to being used in surveillance systems, and our testing shows that for this application it is more effective than other standard optical flow techniques.

Impact and interest:

2 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

94 since deposited on 17 Jun 2009
24 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 25579
Item Type: Conference Paper
Keywords: Optical Flow, Person Tracking, Adaptive Motion Detection
DOI: 10.1109/DICTA.2005.11
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Image Processing (080106)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Copyright Owner: Copyright 2005 IEEE
Copyright Statement: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Deposited On: 18 Jun 2009 01:17
Last Modified: 29 Feb 2012 23:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page