QUT ePrints

New particle formation and growth at a remote, sub-tropical coastal location

Modini, Robin L., Ristovski, Zoran, Johnson, Graham R., He, Congrong, Surawski, Nicholas, Morawska, Lidia, Suni, Tanji, & Kulmala, Markku (2009) New particle formation and growth at a remote, sub-tropical coastal location. Atmospheric Chemistry and Physics Discussions, 9(19), pp. 7607-7621.

View at publisher (open access)

Abstract

A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.

Impact and interest:

32 citations in Scopus
Search Google Scholar™
26 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

89 since deposited on 19 Jun 2009
29 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 25831
Item Type: Journal Article
Additional URLs:
Keywords: particle size distributions, ion size distributions, new particle formation, coastal nucleation
DOI: 10.5194/acp-9-7607-2009
ISSN: 1680-7367
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > OTHER PHYSICAL SCIENCES (029900) > Physical Sciences not elsewhere classified (029999)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > OTHER CHEMICAL SCIENCES (039900) > Environmental Chemistry (incl. Atmospheric Chemistry) (039901)
Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > ATOMIC MOLECULAR NUCLEAR PARTICLE AND PLASMA PHYSICS (020200) > Particle Physics (020203)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2009 The authors.
Copyright Statement: This work is distributed under the Creative Commons Attribution 3.0 License.
Deposited On: 19 Jun 2009 14:13
Last Modified: 16 Oct 2014 13:39

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page