Protocol engineering for protection against denial-of-service attacks

Tritilanunt, Suratose (2009) Protocol engineering for protection against denial-of-service attacks. PhD thesis, Queensland University of Technology.


Denial-of-service attacks (DoS) and distributed denial-of-service attacks (DDoS) attempt to temporarily disrupt users or computer resources to cause service un- availability to legitimate users in the internetworking system. The most common type of DoS attack occurs when adversaries °ood a large amount of bogus data to interfere or disrupt the service on the server. The attack can be either a single-source attack, which originates at only one host, or a multi-source attack, in which multiple hosts coordinate to °ood a large number of packets to the server. Cryptographic mechanisms in authentication schemes are an example ap- proach to help the server to validate malicious tra±c. Since authentication in key establishment protocols requires the veri¯er to spend some resources before successfully detecting the bogus messages, adversaries might be able to exploit this °aw to mount an attack to overwhelm the server resources. The attacker is able to perform this kind of attack because many key establishment protocols incorporate strong authentication at the beginning phase before they can iden- tify the attacks. This is an example of DoS threats in most key establishment protocols because they have been implemented to support con¯dentiality and data integrity, but do not carefully consider other security objectives, such as availability. The main objective of this research is to design denial-of-service resistant mechanisms in key establishment protocols. In particular, we focus on the design of cryptographic protocols related to key establishment protocols that implement client puzzles to protect the server against resource exhaustion attacks. Another objective is to extend formal analysis techniques to include DoS- resistance. Basically, the formal analysis approach is used not only to analyse and verify the security of a cryptographic scheme carefully but also to help in the design stage of new protocols with a high level of security guarantee. In this research, we focus on an analysis technique of Meadows' cost-based framework, and we implement DoS-resistant model using Coloured Petri Nets. Meadows' cost-based framework is directly proposed to assess denial-of-service vulnerabil- ities in the cryptographic protocols using mathematical proof, while Coloured Petri Nets is used to model and verify the communication protocols using inter- active simulations. In addition, Coloured Petri Nets are able to help the protocol designer to clarify and reduce some inconsistency of the protocol speci¯cation. Therefore, the second objective of this research is to explore vulnerabilities in existing DoS-resistant protocols, as well as extend a formal analysis approach to our new framework for improving DoS-resistance and evaluating the performance of the new proposed mechanism. In summary, the speci¯c outcomes of this research include following results; 1. A taxonomy of denial-of-service resistant strategies and techniques used in key establishment protocols; 2. A critical analysis of existing DoS-resistant key exchange and key estab- lishment protocols; 3. An implementation of Meadows's cost-based framework using Coloured Petri Nets for modelling and evaluating DoS-resistant protocols; and 4. A development of new e±cient and practical DoS-resistant mechanisms to improve the resistance to denial-of-service attacks in key establishment protocols.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

817 since deposited on 10 Jul 2009
43 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 26277
Item Type: QUT Thesis (PhD)
Supervisor: Boyd, Colin, Foo, Ernest, & Gonzalez Nieto, Juan
Keywords: denial of service attacks, denial of service resistance, key establishment proto- cols, Host Identity Protocol (HIP), Meadows' cost-based framework, Coloured Petri Nets, CPN Tools, denial of service modelling
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Institutes > Information Security Institute
Institution: Queensland University of Technology
Deposited On: 10 Jul 2009 03:07
Last Modified: 28 Oct 2011 19:53

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page