QUT ePrints

Development of a biaxial compression device for biological samples : preliminary experimental results for a closed cell foam

Little, Judith Paige, Tevelen, Gregory, Adam, Clayton J., Evans, John H., & Pearcy, Mark J. (2009) Development of a biaxial compression device for biological samples : preliminary experimental results for a closed cell foam. Journal of the Mechanical Behavior of Biomedical Materials, 2(3), pp. 305-309.

View at publisher

Abstract

Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

Impact and interest:

1 citations in Scopus
Search Google Scholar™
1 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

137 since deposited on 15 Sep 2009
28 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 27353
Item Type: Journal Article
Additional Information: Little, J P Tevelen, G Adam, C J Evans, J H Pearcy, M J Netherlands Journal of the mechanical behavior of biomedical materials J Mech Behav Biomed Mater. 2009 Jul;2(3):305-9. Epub 2008 Nov 19.
Keywords: biaxial compression, pressure vessel, biological tissue testing
DOI: 10.1016/j.jmbbm.2008.10.011
ISSN: 1878-0180
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomechanical Engineering (090302)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2009 Elsevier Ltd
Deposited On: 15 Sep 2009 10:50
Last Modified: 29 Feb 2012 23:56

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page