Relative entropy rate based multiple hidden Markov Model Approximation

Lai, John & Ford, Jason J. (2010) Relative entropy rate based multiple hidden Markov Model Approximation. IEEE Transactions on Signal Processing, 58(1), pp. 165-174.

View at publisher


This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.

Impact and interest:

28 citations in Scopus
Search Google Scholar™
16 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

469 since deposited on 27 Sep 2009
13 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 27587
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: Hidden Markov Model, Relative Entropy Rate, Model Approximation
DOI: 10.1109/TSP.2009.2028115
ISSN: 1053-587X
Subjects: Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > STATISTICS (010400) > Stochastic Analysis and Modelling (010406)
Australian and New Zealand Standard Research Classification > MATHEMATICAL SCIENCES (010000) > STATISTICS (010400) > Probability Theory (010404)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Image Processing (080106)
Divisions: Current > Research Centres > Australian Research Centre for Aerospace Automation
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2010 IEEE
Deposited On: 27 Sep 2009 22:19
Last Modified: 11 Apr 2013 02:41

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page