Cyclic strain disrupts endothelial network formation on Matrigel

Wilson, Cameron, Kasper, Grit, Schutz, Michael A., & Duda, Georg N. (2009) Cyclic strain disrupts endothelial network formation on Matrigel. Microvascular Research, 78(3), pp. 358-363.

View at publisher


Most forms of tissue healing depend critically on revascularisation. In soft tissues and in vitro, mechanical stimuli have been shown to promote vessel-forming activity. However, in bone defects, increased interfragmentary motion impairs vascular regeneration. Because these effects seem contradictory, we aimed to determine whether a range of mechanical stimuli exists in which angiogenesis is favoured. A series of cyclic strain magnitudes were applied to a Matrigel-based “tube formation” assay and the total lengths of networks formed by human microvascular endothelial cells measured at 24 h. Network lengths were reduced at all strain levels, compared to unstretched controls. However, the levels of pro-angiogenic matrix metalloproteases-2 and -9 in the corresponding conditioned media were unchanged by strain, and vascular endothelial growth factor was uniformly elevated in stretched conditions. By repeating the assay with the addition of conditioned media from mesenchymal stem cells cultivated in similar conditions, paracrine stimuli were shown to increase network lengths, but not to alter the negative effect of cyclic stretching. Together, these results demonstrate that directly applied periodic strains can inhibit endothelial organisation in vitro, and suggest that this may be due to physical disruption rather than biochemical modulation. Most importantly, the results indicate that the straining of endothelial cells and their assembly into vascular-like structures must be studied simultaneously to adequately characterise the mechanical influence on vessel formation.

Impact and interest:

10 citations in Scopus
11 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

291 since deposited on 12 Oct 2009
9 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 27868
Item Type: Journal Article
Refereed: Yes
Keywords: Mechanical strain, Vasculogenesis, Tube formation, Endothelial cells
DOI: 10.1016/j.mvr.2009.08.002
ISSN: 0026-2862
Subjects: Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100) > Biochemistry and Cell Biology not elsewhere classified (060199)
Australian and New Zealand Standard Research Classification > BIOLOGICAL SCIENCES (060000) > BIOCHEMISTRY AND CELL BIOLOGY (060100) > Cellular Interactions (incl. Adhesion Matrix Cell Wall) (060106)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomechanical Engineering (090302)
Divisions: Current > Schools > School of Chemistry, Physics & Mechanical Engineering
Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Current > QUT Faculties and Divisions > Science & Engineering Faculty
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2009 Elsevier
Deposited On: 12 Oct 2009 00:14
Last Modified: 04 Oct 2015 10:10

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page