QUT ePrints

Proton-transfer versus nontransfer in compounds of the diazo-dye precursor 4-(phenyldiazenyl) aniline (aniline yellow) with strong organic acids: the 5-sulfosalicylate and the dichroic benzenesulfonate salts, and the 1:2 adduct with 3,5-dinitrobenzoic

Smith, Graham, Wermuth, Urs D., Young, David J., & White, Jonathan M. (2009) Proton-transfer versus nontransfer in compounds of the diazo-dye precursor 4-(phenyldiazenyl) aniline (aniline yellow) with strong organic acids: the 5-sulfosalicylate and the dichroic benzenesulfonate salts, and the 1:2 adduct with 3,5-dinitrobenzoic. Acta Crystallographica Section C : Crystal Structure Communications, 65(10), o543-o548.

View at publisher

Abstract

The structures of two 1:1 proton-transfer red-black dye compounds formed by reaction of aniline yellow [4-(phenyldiazenyl)aniline] with 5-sulfosalicylic acid and benzenesulfonic acid, and a 1:2 nontransfer adduct compound with 3,5-dinitrobenzoic acid have been determined at either 130 or 200 K. The compounds are 2-(4-aminophenyl)-1-phenylhydrazin-1-ium 3-carboxy-4-hydroxybenzenesulfonate methanol solvate, C12H12N3+.C7H5O6S-.CH3OH (I), 2-(4-aminophenyl)-1-hydrazin-1-ium 4-(phenydiazinyl)anilinium
bis(benzenesulfonate), 2C12H12N3+.2C6H5O3S-, (II) and 4-(phenyldiazenyl)aniline-3,5-dinitrobenzoic acid (1/2) C12H11N3.2C~7~H~4~N~2~O~6~, (III). In compound (I) the diaxenyl rather than the aniline group of aniline yellow is protonated and this group subsequently akes part in a primary hydrogen-bonding interaction with a sulfonate O-atom acceptor, producing overall a three-dimensional framework structure. A feature of the hydrogen bonding in (I) is a peripheral edge-on cation-anion association involving aromatic C--H...O hydrogen bonds, giving a conjoint R1/2(6)R1/2(7)R2/1(4)motif. In the dichroic crystals of (II), one of the two aniline yellow species in the asymmetric unit is diazenyl-group protonated while in the other the aniline group is protonated. Both of these groups form hydrogen bonds with sulfonate O-atom acceptors and thee, together with other associations give a one-dimensional chain structure. In compound (III), rather than proton-transfer, there is a preferential formation of a classic R2/2(8) cyclic head-to-head hydrogen-bonded carboxylic acid homodimer between the two 3,5-dinitrobenzoic acid molecules, which in association with the aniline yellow molecule that is disordered across a crystallographic inversion centre, result in an overall
two-dimensional ribbon structure. This work has shown the correlation between structure and observed colour in crystalline aniline yellow compounds, illustrated graphically in the dichroic benzenesulfonate compound.

Impact and interest:

7 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

205 since deposited on 15 Oct 2009
43 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 28046
Item Type: Journal Article
Keywords: ctystal structure, azo-dyes, aniline yellow, dichroism
DOI: 10.1107/S0108270109036622
ISSN: 0108-2701
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Physical & Chemical Sciences
Copyright Owner: Copyright 2009 International Union of Crystallography
Deposited On: 16 Oct 2009 09:49
Last Modified: 01 Mar 2012 00:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page