Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds

Peister, Alexandra, Deutsch, Eric R., Kolambkar, Yash, Hutmacher, Dietmar W., & Guldberg, Robert E. (2009) Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds. Tissue Engineering. Part A. Tissue Engineering, 15(10), pp. 3129-3138.

View at publisher


Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects

Impact and interest:

45 citations in Scopus
Search Google Scholar™
42 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 28208
Item Type: Journal Article
Refereed: Yes
Additional URLs:
Keywords: stem cells, scaffolds, regenerative medicine, poly e-caprolactone, large bone defects
DOI: 10.1089/ten.tea.2008.0536
ISSN: 1937-3341
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Deposited On: 27 Oct 2009 01:20
Last Modified: 29 Feb 2012 13:58

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page