Multi-criteria ranking and source apportionment of fine particulate matter in Brisbane, Australia

Friend, Adrian & Ayoko, Godwin (2009) Multi-criteria ranking and source apportionment of fine particulate matter in Brisbane, Australia. Environmental Chemistry, 6(5), pp. 398-406.

View at publisher


This paper reports the application of multicriteria decision making techniques, PROMETHEE and GAIA, and receptor models, PCA/APCS and PMF, to data from an air monitoring site located on the campus of Queensland University of Technology in Brisbane, Australia and operated by Queensland Environmental Protection Agency (QEPA). The data consisted of the concentrations of 21 chemical species and meteorological data collected between 1995 and 2003. PROMETHEE/GAIA separated the samples into those collected when leaded and unleaded petrol were used to power vehicles in the region. The number and source profiles of the factors obtained from PCA/APCS and PMF analyses were compared. There are noticeable differences in the outcomes possibly because of the non-negative constraints imposed on the PMF analysis. While PCA/APCS identified 6 sources, PMF reduced the data to 9 factors. Each factor had distinctive compositions that suggested that motor vehicle emissions, controlled burning of forests, secondary sulphate, sea salt and road dust/soil were the most important sources of fine particulate matter at the site. The most plausible locations of the sources were identified by combining the results obtained from the receptor models with meteorological data. The study demonstrated the potential benefits of combining results from multi-criteria decision making analysis with those from receptor models in order to gain insights into information that could enhance the development of air pollution control measures.

Impact and interest:

8 citations in Scopus
Search Google Scholar™
8 citations in Web of Science®

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

213 since deposited on 11 Dec 2009
18 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 29232
Item Type: Journal Article
Refereed: Yes
Keywords: Air Quality, Source Identification, Receptor Models, PMF
ISSN: 1448-2517
Subjects: Australian and New Zealand Standard Research Classification > PHYSICAL SCIENCES (020000) > ATOMIC MOLECULAR NUCLEAR PARTICLE AND PLASMA PHYSICS (020200) > Particle Physics (020203)
Australian and New Zealand Standard Research Classification > EARTH SCIENCES (040000) > ATMOSPHERIC SCIENCES (040100) > Atmospheric Aerosols (040101)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Physical & Chemical Sciences
Copyright Owner: Copyright 2009 CSIRO
Deposited On: 11 Dec 2009 02:14
Last Modified: 29 Feb 2012 14:09

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page