State-of-the-Art Review on Opinion Mining from Online Customers’ Feedback

Bhuiyan, Touhid , Xu, Yue, & Josang, Audun (2009) State-of-the-Art Review on Opinion Mining from Online Customers’ Feedback. In Proceedings of the 9th Asia-Pacific Complex Systems Conference, Chuo University, Chuo University, Tokyo, pp. 385-390.

Conference Paper (PDF 302kB)
Accepted Version.

View at publisher


Dealing with the ever-growing information overload in the Internet, Recommender Systems are widely used online to suggest potential customers item they may like or find useful. Collaborative Filtering is the most popular techniques for Recommender Systems which collects opinions from customers in the form of ratings on items, services or service providers. In addition to the customer rating about a service provider, there is also a good number of online customer feedback information available over the Internet as customer reviews, comments, newsgroups post, discussion forums or blogs which is collectively called user generated contents. This information can be used to generate the public reputation of the service providers’. To do this, data mining techniques, specially recently emerged opinion mining could be a useful tool. In this paper we present a state of the art review of Opinion Mining from online customer feedback. We critically evaluate the existing work and expose cutting edge area of interest in opinion mining. We also classify the approaches taken by different researchers into several categories and sub-categories. Each of those steps is analyzed with their strength and limitations in this paper.

Impact and interest:

Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

1,387 since deposited on 16 Dec 2009
46 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 29301
Item Type: Conference Paper
Refereed: Yes
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > DISTRIBUTED COMPUTING (080500) > Web Technologies (excl. Web Search) (080505)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Information Technology
Copyright Owner: Copyright 2009 Please consult the authors.
Deposited On: 16 Dec 2009 05:35
Last Modified: 22 Jul 2014 04:13

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page