QUT ePrints

Investigating the use of association rules in improving recommender systems

Shaw, Gavin, Xu, Yue, & Geva, Shlomo (2009) Investigating the use of association rules in improving recommender systems. In ADCS 2009 : HCSNet Summerfest 09, 14th Australasian Document Computing Symposium, 30 Nov. - 4 Dec., 2009, University of New South Wales, Sydney, Australia.

View at publisher

Abstract

Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus when there is not sufficient knowledge on a user it is difficult for a recommender system to make quality recommendations. This problem is often referred to as the cold-start problem. Here we investigate whether association rules can be used as a source of information to expand a user profile and thus avoid this problem, leading to improved recommendations to users. Our pilot study shows that indeed it is possible to use association rules to improve the performance of a recommender system. This we believe can lead to further work in utilising appropriate association rules to lessen the impact of the cold-start problem.

Impact and interest:

3 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

201 since deposited on 19 Jan 2010
38 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 29797
Item Type: Conference Item (Poster)
Keywords: Information Retrieval, Personalised Documents, Recommender Systems, Association Rules
ISBN: 9781742101712
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > INFORMATION SYSTEMS (080600) > Information Systems not elsewhere classified (080699)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > LIBRARY AND INFORMATION STUDIES (080700) > Information Retrieval and Web Search (080704)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Information Technology
Copyright Owner: Copyright 2009 please contact the authors
Deposited On: 20 Jan 2010 09:56
Last Modified: 01 Mar 2012 00:12

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page