QUT ePrints

Measuring Visual Consistency in 3D Rendering Systems

Nantes, Alfredo, Brown, Ross A., & Maire, Frederic D. (2010) Measuring Visual Consistency in 3D Rendering Systems. In Conferences in Research and Practice in Information Technology - CRPIT, Australian Computer Society, Queensland University of Technology, Brisbane.

[img] Conference Paper (PDF 3MB)
Published Version.

View at publisher

Abstract

One of the major challenges facing a present day game development company is the removal of bugs from such complex virtual environments. This work presents an approach for measuring the correctness of synthetic scenes generated by a rendering system of a 3D application, such as a computer game. Our approach builds a database of labelled point clouds representing the spatiotemporal colour distribution for the objects present in a sequence of bug-free frames. This is done by converting the position that the pixels take over time into the 3D equivalent points with associated colours. Once the space of labelled points is built, each new image produced from the same game by any rendering system can be analysed by measuring its visual inconsistency in terms of distance from the database. Objects within the scene can be relocated (manually or by the application engine); yet the algorithm is able to perform the image analysis in terms of the 3D structure and colour distribution of samples on the surface of the object. We applied our framework to the publicly available game RacingGame developed for Microsoft(R) Xna(R). Preliminary results show how this approach can be used to detect a variety of visual artifacts generated by the rendering system in a professional quality game engine.

Impact and interest:

0 citations in Scopus
Search Google Scholar™

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

185 since deposited on 21 Jan 2010
35 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 29853
Item Type: Conference Paper
Additional URLs:
Keywords: Synthetic Image Analysis, Computer Vision, Computer Game Testing
ISSN: 1445-1336
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Graphics (080103)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Image Processing (080106)
Divisions: Past > QUT Faculties & Divisions > Faculty of Science and Technology
Past > Schools > School of Information Systems
Copyright Owner: Copyright 2010 Please consult the authors.
Deposited On: 21 Jan 2010 12:02
Last Modified: 01 Mar 2012 00:28

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page