Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations

Nahrung, Helen, Schutze, Mark, Clarke, Anthony R., Duffy, Michael, Dunlop, Elizabeth A., & Lawson, Simon (2008) Thermal requirements, field mortality and population phenology modelling of Paropsis atomaria Olivier, an emergent pest in subtropical hardwood plantations. Forest Ecology and Management, 255(8-9), pp. 3515-3523.

View at publisher


Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.

Impact and interest:

15 citations in Scopus
12 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

194 since deposited on 12 Feb 2010
23 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 30895
Item Type: Journal Article
Refereed: Yes
Keywords: Eucalypt, DYMEX (TM), Voltinism, Seasonal plasticity
DOI: 10.1016/j.foreco.2008.02.033
ISSN: 0378-1127
Subjects: Australian and New Zealand Standard Research Classification > AGRICULTURAL AND VETERINARY SCIENCES (070000) > HORTICULTURAL PRODUCTION (070600) > Horticultural Crop Protection (Pests Diseases and Weeds) (070603)
Divisions: Past > Schools > Biogeoscience
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Deposited On: 12 Feb 2010 12:50
Last Modified: 29 Feb 2012 13:51

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page