QUT ePrints

The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model

Ho, Saey Tuan Barnabas, Hutmacher, Dietmar W., Ekaputra, Andrew Krishna, Hitendra, Doshi, & James, Hoi Hui (2009) The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Engineering. Part A. Tissue Engineering, pp. 1-20.

View at publisher

Abstract

Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.

Impact and interest:

26 citations in Scopus
Search Google Scholar™
25 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 30978
Item Type: Journal Article
Keywords: mesenchymal stem cells, electrospinning, tissue engineering, scaffolds, polycaprolactone
DOI: 10.1089/ten.tea.2009.0471
ISSN: 1937-3341
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Medical Devices (090304)
Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > BIOMEDICAL ENGINEERING (090300) > Biomaterials (090301)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Current > Institutes > Institute of Health and Biomedical Innovation
Past > Schools > School of Engineering Systems
Deposited On: 16 Feb 2010 15:04
Last Modified: 01 Mar 2012 00:27

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page