QUT ePrints

Improved simultaneous computation of motion detection and optical flow for object tracking

Denman, Simon, Fookes, Clinton B., & Sridharan, Sridha (2010) Improved simultaneous computation of motion detection and optical flow for object tracking. In Proceedings of DICTA 2009 : Digital Image Computing : Techniques and Applications, 2009, IEEE Computer Society’s Conference Publishing Services, Melbourne, Australia, pp. 175-182.

View at publisher

Abstract

Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.

Impact and interest:

22 citations in Scopus
Search Google Scholar™
5 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

238 since deposited on 16 Mar 2010
76 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 31333
Item Type: Conference Paper
Keywords: Motion Segmentation, Optical Flow, Image Segmentation, Object Tracking, Flow Vector Tracking
DOI: 10.1109/DICTA.2009.35
ISBN: 9781424452972
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Computer Vision (080104)
Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Image Processing (080106)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Institutes > Information Security Institute
Past > Schools > School of Engineering Systems
Copyright Owner: Copyright 2009 IEEE Computer Society’s Conference Publishing Services
Deposited On: 16 Mar 2010 11:50
Last Modified: 01 Mar 2012 00:04

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page