QUT ePrints

Characterisation of Ni carbonate-bearing minerals by UV-Vis-NIR spectroscopy

Frost, Ray L., Keeffe, Eloise C., & Reddy, B. Jagannadha (2010) Characterisation of Ni carbonate-bearing minerals by UV-Vis-NIR spectroscopy. Transition Metal Chemistry, 35(3), pp. 279-287.

View at publisher

Abstract

Four nickel carbonate-bearing minerals from Australia have been investigated to study the effect of Ni for Mg substitution. The spectra of nullaginite, zaratite, widgiemoolthalite and takovite show three main features in the range of 26,720–25,855 cm−1 (ν1-band), 15,230–14,740 cm−1 (ν2-band) and 9,200–9,145 cm−1 (ν3-band) which are characteristic of divalent nickel in six-fold coordination. The Crystal Field Stabilization Energy (CFSE) of Ni2+ in the four carbonates is calculated from the observed 3A2g(3F) → 3T2g(3F) transition. CFSE is dependent on mineralogy, crystallinity and chemical composition (Al/Mg-content). The splitting of the ν1- and ν3-bands and non-Gaussian shape of ν3-band in the minerals are the effects of Ni-site distortion from regular octahedral. The effect of structural cation substitutions (Mg2+, Ni2+, Fe2+ and trivalent cations, Al3+, Fe3+) in the carbonate minerals is noticed on band shifts. Thus, electronic bands in the UV–Vis–NIR spectra and the overtones and combination bands of OH and carbonate ion in NIR show shifts to higher wavenumbers, particularly for widgiemoolthalite and takovite.

Impact and interest:

3 citations in Scopus
Search Google Scholar™
3 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

310 since deposited on 05 Apr 2010
62 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 31607
Item Type: Journal Article
Additional Information: This paper is one of a series of papers on the COLOUR of minerals
Additional URLs:
Keywords: Inorganic compounds; Near-infrared spectroscopy; Crystal fields; Optical properties
DOI: 10.1007/s11243-009-9324-7
ISSN: 0340-4285
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Colloid and Surface Chemistry (030603)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Divisions: Past > Schools > Chemistry
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2010 Springer Verlag
Copyright Statement: The original publication is available at SpringerLink http://www.springerlink.com
Deposited On: 06 Apr 2010 09:37
Last Modified: 01 Mar 2012 00:15

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page