Identifying work related injuries : comparison of methods for interrogating text fields

McKenzie, Kirsten, Campbell, Margaret, Scott, Deborah A., Discoll, Tim, Harrison, James E., & McClure, Roderick J. (2010) Identifying work related injuries : comparison of methods for interrogating text fields. B M C Medical Informatics and Decision Making, 10(19), pp. 1-28.

View at publisher


Background: Work-related injuries in Australia are estimated to cost around $57.5 billion annually, however there are currently insufficient surveillance data available to support an evidence-based public health response. Emergency departments (ED) in Australia are a potential source of information on work-related injuries though most ED’s do not have an ‘Activity Code’ to identify work-related cases with information about the presenting problem recorded in a short free text field. This study compared methods for interrogating text fields for identifying work-related injuries presenting at emergency departments to inform approaches to surveillance of work-related injury.---------- Methods: Three approaches were used to interrogate an injury description text field to classify cases as work-related: keyword search, index search, and content analytic text mining. Sensitivity and specificity were examined by comparing cases flagged by each approach to cases coded with an Activity code during triage. Methods to improve the sensitivity and/or specificity of each approach were explored by adjusting the classification techniques within each broad approach.---------- Results: The basic keyword search detected 58% of cases (Specificity 0.99), an index search detected 62% of cases (Specificity 0.87), and the content analytic text mining (using adjusted probabilities) approach detected 77% of cases (Specificity 0.95).---------- Conclusions The findings of this study provide strong support for continued development of text searching methods to obtain information from routine emergency department data, to improve the capacity for comprehensive injury surveillance.

Impact and interest:

4 citations in Scopus
3 citations in Web of Science®
Search Google Scholar™

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

123 since deposited on 16 Apr 2010
10 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 31672
Item Type: Journal Article
Refereed: Yes
Additional URLs:
DOI: 10.1186/1472-6947-10-19
ISSN: 1472-6947
Subjects: Australian and New Zealand Standard Research Classification > MEDICAL AND HEALTH SCIENCES (110000) > PUBLIC HEALTH AND HEALTH SERVICES (111700) > Health Information Systems (incl. Surveillance) (111711)
Divisions: Current > QUT Faculties and Divisions > Faculty of Health
Current > Institutes > Institute of Health and Biomedical Innovation
Copyright Owner: Copyright 2010 [please consult the authors]
Deposited On: 16 Apr 2010 00:40
Last Modified: 21 Jun 2017 14:43

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page