QUT ePrints

Thermal analysis and hot stage Raman spectroscopy of the basic copper arsenate mineral : euchroite

Frost, Ray L. & Bahfenne, Silmarilly (2010) Thermal analysis and hot stage Raman spectroscopy of the basic copper arsenate mineral : euchroite. Journal of Thermal Analysis and Calorimetry, 100(1), pp. 89-94.

View at publisher

Abstract

The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.

Impact and interest:

2 citations in Scopus
Search Google Scholar™
2 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

121 since deposited on 20 Apr 2010
50 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 31834
Item Type: Journal Article
Additional URLs:
Keywords: copper, arsenate, olivenite, cornwallite, cornubite, clinoclase thermal stage, Raman spectroscopy
DOI: 10.1007/s10973-009-0599-x
ISSN: 1572-8943
Subjects: Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Structural Chemistry and Spectroscopy (030606)
Australian and New Zealand Standard Research Classification > CHEMICAL SCIENCE (030000) > PHYSICAL CHEMISTRY (INCL. STRUCTURAL) (030600) > Chemical Thermodynamics and Energetics (030602)
Divisions: Past > Schools > Chemistry
Past > QUT Faculties & Divisions > Faculty of Science and Technology
Copyright Owner: Copyright 2010 Akadémiai Kiadó
Copyright Statement: The original publication is available at SpringerLink http://www.springerlink.com
Deposited On: 20 Apr 2010 15:22
Last Modified: 01 Mar 2012 00:15

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page