QUT ePrints

Representation and learning of visual information for pose recognition

Prasser, David & Wyeth, Gordon (2003) Representation and learning of visual information for pose recognition. In Roberts, Jonathan & Wyeth, Gordon (Eds.) Proceedings of the Australasian Conference on Robotics and Automation, 2003, Australian Robotics and Automation Association Inc, Brisbane, Queensland.

View at publisher

Abstract

Recovering position from sensor information is an important problem in mobile robotics, known as localisation. Localisation requires a map or some other description of the environment to provide the robot with a context to interpret sensor data. The mobile robot system under discussion is using an artificial neural representation of position. Building a geometrical map of the environment with a single camera and artificial neural networks is difficult. Instead it would be simpler to learn position as a function of the visual input. Usually when learning images, an intermediate representation is employed. An appropriate starting point for biologically plausible image representation is the complex cells of the visual cortex, which have invariance properties that appear useful for localisation. The effectiveness for localisation of two different complex cell models are evaluated. Finally the ability of a simple neural network with single shot learning to recognise these representations and localise a robot is examined.

Impact and interest:

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

28 since deposited on 23 Jun 2010
12 in the past twelve months

Full-text downloadsdisplays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 32820
Item Type: Conference Paper
Additional URLs:
ISBN: 0958758352
Subjects: Australian and New Zealand Standard Research Classification > INFORMATION AND COMPUTING SCIENCES (080000) > ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING (080100) > Adaptive Agents and Intelligent Robotics (080101)
Copyright Owner: Copyright 2003 [please consult the authors]
Deposited On: 23 Jun 2010 10:11
Last Modified: 11 Aug 2011 02:55

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page