Effect of section geometry on the lateral distortional buckling of LiteSteel beams

Anapayan, Tharmarajah & Mahendran, Mahen (2009) Effect of section geometry on the lateral distortional buckling of LiteSteel beams. In Surawski, Nicholas C. & Wiliem, Arnold (Eds.) Proceedings for the 3rd Smart Systems Postgraduate Student Conference, Queensland University of Technology, Queensland University of Technology, Brisbane, pp. 71-76.


The LiteSteel Beam (LSB) is a new hollow flange section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming technologies. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It has found increasing popularity in residential, industrial and commercial buildings as flexural members. The LSB is considerably lighter than traditional hot-rolled steel beams and provides both structural and construction efficiencies. However, the LSB flexural members are subjected to a relatively new lateral distortional buckling mode, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral defection, twist and cross sectional change due to web distortion. The current design rules in AS/NZS 4600 (SA, 2005) for flexural members subject to lateral distortional buckling were found to be conservative by about 8% in the inelastic buckling region. Therefore, a new design rule was developed for LSBs subject to lateral distortional buckling based on finite element analyses of LSBs. The effect of section geometry was then considered and several geometrical parameters were used to develop an advanced set of design rules. This paper presents the details of the finite element analyses and the design curve development for hollow flange sections subject to lateral distortional buckling.

Impact and interest:

Citation counts are sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

Full-text downloads:

60 since deposited on 29 Jun 2010
1 in the past twelve months

Full-text downloads displays the total number of times this work’s files (e.g., a PDF) have been downloaded from QUT ePrints as well as the number of downloads in the previous 365 days. The count includes downloads for all files if a work has more than one.

ID Code: 32971
Item Type: Conference Paper
Refereed: Yes
Additional URLs:
Keywords: Lateral Distortional Buckling, LSB, Section Geometry
ISBN: 9780980582727
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Past > Schools > School of Urban Development
Copyright Owner: Copyright 2009 Queensland University of Technology
Deposited On: 29 Jun 2010 06:20
Last Modified: 01 Dec 2011 06:04

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page