QUT ePrints

ERTP : Energy-efficient and reliable transport protocol for data streaming in wireless sensor networks

Tuan, Le, Hu, Wen, Corke, Peter, & Jha, Sanjay (2009) ERTP : Energy-efficient and reliable transport protocol for data streaming in wireless sensor networks. Computer Communications, 32(7-10), pp. 1154-1171.

View at publisher

Abstract

Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, P. Corke, L. Overs, S. Brosnan, Design and deployment of a remote robust sensor network: experiences from an outdoor water quality monitoring network, in: Second IEEE Workshop on Practical Issues in Building Sensor Network Applications (SenseApp 2007), Dublin, Ireland, 2007] is one such example. This application involves streaming sensed data such as pressure, water flow rate, and salinity periodically from many scattered sensors to the sink node which in turn relays them via an IP network to a remote site for archiving, processing, and presentation. While latency is not a primary concern in this class of application (the sampling rate is usually in terms of minutes or hours), energy-efficiency is. Continuous long-term operation and reliable delivery of the sensed data to the sink are also desirable. This paper proposes ERTP, an Energy-efficient and Reliable Transport Protocol for Wireless Sensor Networks. ERTP is designed for data streaming applications, in which sensor readings are transmitted from one or more sensor sources to a base station (or sink). ERTP uses a statistical reliability metric which ensures the number of data packets delivered to the sink exceeds the defined threshold. Our extensive discrete event simulations and experimental evaluations show that ERTP is significantly more energyefficient than current approaches and can reduce energy consumption by more than 45% when compared to current approaches. Consequently, sensor nodes are more energy-efficient and the lifespan of the unattended WSN is increased.

Impact and interest:

29 citations in Scopus
Search Google Scholar™
12 citations in Web of Science®

Citation countsare sourced monthly from Scopus and Web of Science® citation databases.

These databases contain citations from different subsets of available publications and different time periods and thus the citation count from each is usually different. Some works are not in either database and no count is displayed. Scopus includes citations from articles published in 1996 onwards, and Web of Science® generally from 1980 onwards.

Citations counts from the Google Scholar™ indexing service can be viewed at the linked Google Scholar™ search.

ID Code: 33771
Item Type: Journal Article
Keywords: Wireless Sensor Network, Energy-efficiency, Reliability, Transport protocol
DOI: 10.1016/j.comcom.2008.12.045
ISSN: 0140-3664
Subjects: Australian and New Zealand Standard Research Classification > ENGINEERING (090000) > ELECTRICAL AND ELECTRONIC ENGINEERING (090600)
Divisions: Past > QUT Faculties & Divisions > Faculty of Built Environment and Engineering
Past > Schools > School of Engineering Systems
Deposited On: 26 Aug 2010 13:29
Last Modified: 01 Mar 2012 00:11

Export: EndNote | Dublin Core | BibTeX

Repository Staff Only: item control page